Cat of two struct: not the same fields
I have multiple csv files
a.csv
field_a, field_b 111, 121 112, 122
b.csv
field_a, field_c 211, 231 212, 232
c.csv
field_a, field_b, field_c 311, 321, 331 312, 322, 332
And I would like to combine them
output.csv
field_a,field_b,field_c 111, 121, NA 112, 122, NA 211, NA, 231 212, NA, 232 311, 321, 331 312, 322, 332
I would like to do it with an octave.
What I have done so far:
a=csv2cell(a.csv)
A=cell2struct(a(2:end,:),a(1,:),1)
and now I am looking for something like
Merge (A, B, C) or vertcat (A, B, C)
but I didn't understand that all fields are in the output.
Whereas I did it like this:
filelist<-list.files()
for (i in 1:length(filelist)) {
datas[[i]]<-list(as.data.frame(read.csv(filelist[i])))
merged <- merge(merged,datas[[i]], all=TRUE)}
but the for-loop is terribly slow. So I'm looking for an opportunity to combine them all at once.
How I finally did:
With Octave (MATLAB)
% FileNames=readdir(pwd);
d=dir(pwd);
isDirIdx = [d.isdir];
names = {d.name};
FileNames = names(~isDirIdx);
for ii = 1:numel(FileNames)
% Load csv to cell
datas{ii}=csv2cell(FileNames{ii});
% Then I convert them to a struct
Datas{ii}=cell2struct((datas{ii}(2:end,:)),[datas{ii}(1,:)],2);
try fields=[fields, fieldnames(Datas{ii})'];% fails for the first loop, becauce 'fields' doesn't exist yet
catch
fields=[fieldnames(Datas{ii})']; % create 'fields' in the first loop
end
Datalenght(ii)=numel(Datas{ii}(1));
end
cd(startdir)
for jj=1:numel(Datas)
missing_fields{jj} = setdiff(fields,fieldnames(Datas{jj}));
for kk=1:numel(missing_fields{jj})
[Datas{jj}.(missing_fields{jj}{kk})]=deal(NaN);%*zeros(numel(datas{jj}(2:end,1)),1);)
end
end
The problem was that I didn't see an easy way to export the structure to csv. So I switch back to R. Since I don't have enough memory, I couldn't load all the files in r and export them as one csv. So first I exported each netcdf file to csv with exactly the same values. Then I combined them all with the unix / gnu cat command.
R:
# Converts all NetCDF (*.nc) in a folder to ASCII (csv)
# when there are more then one, all csv will have the same fields
# when there is a field missing in one NetCDF file, this scripts adds 'NA' Values
# it saves memory, because there is always only one NetCDF-File in the memory.
# Needs package RNetCDF:
# http://cran.r-project.org/web/packages/RNetCDF/index.html
# load package
library('RNetCDF')
# get list of all files to merge
filelist<-list.files()
# initialise variable names
varnames_all<-{}
varnames_file<-list(filelist)
n_files<-length(filelist)
n_vars<-rep(NA,n_files) # initialise
# get variables-names of each NetCDF file
for (i in 1:n_files) {
ncfile<-open.nc(filelist[i]) # open nc file
print(paste(filelist[i],"opend!"))
# get number of variable in the NetCDF
n_vars[i]<-file.inq.nc(ncfile)$nvars
varnames="" # initialise and clear
# read every variable name
for (j in 0:(n_vars[i]-1)) {
varnames[j]<-var.inq.nc(ncfile,j)$name
}
close.nc(ncfile)
varnames_file[[i]]<-varnames # add to the list of all files
varnames_all<-(c(varnames_all,varnames)) # concat to one array
}
varnames_all<-unique(varnames_all) # take every varname only once
print("Existing variable names:")
print(varnames_all)
#initialise a data.frame for load the NetCDF
datas<-data.frame()
for (i in 1:length(filelist)) {
print(filelist[i])
ncfile<-open.nc(filelist[i]) # open nc file
print(paste("reading ", filelist[i], "..."))
datas<-as.data.frame(read.nc(ncfile)) #import data from ncfile as data frame
close.nc(ncfile)
#check witch variables are missing
missing_vars<-setdiff(varnames_all,colnames(datas))
# Add missing variables a colums with NA
datas[missing_vars]<-NA
print(paste("writing ", filelist[i], " to ", filelist[i],".csv ...", sep=""))
#reorder colum in the same way as in the array varname_all
datas<-datas[varnames_all]
# Write File
write.csv(datas,file=paste(filelist[i],".csv", sep=""))
# clear Memory
rm(datas)
}
Then the cat is straight
#!/bin/bash
# Concatenate csv files, whitch have exactly the same fields
## Change to the directory, from where the files is executed
path=$PWD
cd $path
if [ $# -gt 0 ]; then
cd $1
fi
# get a list of all data files
datafile_list=$( ls )
read -a datafile_array <<< $datafile_list
echo "copying files ..."
echo "copying file:" ${datafile_array[0]}
cat < ./${datafile_array[0]} > ../outputCat.csv
for (( i=1; i<${#datafile_array[@]}; i++))
do
echo "copying file" ${datafile_array[$i]}
cat < ./${datafile_array[$i]} | tail -n+2 >> ../outputCat.csv
done
rbind.fill
from the plyr
package should handle this just fine:
require(plyr)
rbind.fill(a,b,c)
# field_a field_b field_c
# 1 111 121 NA
# 2 112 122 NA
# 3 211 NA 231
# 4 212 NA 232
# 5 311 321 331
# 6 312 322 332
I'm not sure about the octave, but in Matlab I use fieldnames
and set functions.
In pseudocode, something like this:
all_fields = union of fieldnames(a), fieldnames(b) and fieldnames(c)
for each variable:
missing_fields = setdiff(all_fields,fieldnames)
add the missing fields
then join