Shamir's Secret Partition and Lagrange Interpolation (OpenSSL BIGNUM)

I've written similar questions before, so I apologize in advance, but I just can't seem to find where I am wrong here.

I am implementing Shamir's secret access using the OpenSSL BIGNUM library in C.

After I do a round of Lagrange interpolation, I multiply key * numerator

and then I need to divide by the denominator.

Since there is BN_mod_div

no function , instead of a sign BN_mod_inverse()

should be used BN_mod_inverse()

and then multiplied like so:

(key * numerator) * (inverse of denominator)

I noticed that if I use BN_mod_inverse(denom, denom, q, ctx);

, then the value to be flipped remains the same:

Round Key: 2E
Numerator: 14
Denominator: 6  **<---- ORIGINAL DENOMINATOR**
Multiply key with numerator: 398 (POSITIVE)
Invert Denominator: 6 (POSITIVE) **<---------- INVERSE IS THE SAME???**
(Key*Numerator)*inv.Denom: 3FC (POSITIVE)

Round Key: 562
Numerator: A
Denominator: -2
Multiply key with numerator: 118 (POSITIVE)
Invert Denominator: -2 (NEGATIVE)
(Key*Numerator)*inv.Denom: 3AC (POSITIVE)

Round Key: 5D1
Numerator: 8
Denominator: 3
Multiply key with numerator: 584 (POSITIVE)
Invert Denominator: 3 (POSITIVE)
(Key*Numerator)*inv.Denom: 4D4 (POSITIVE)
Recovered Key: C4 (POSITIVE)
Key should = 4D2

      

If I change this to BN_mod_inverse(newBN, denom, q, ctx);

, it just turns to zero:

Round Key: 2E
Numerator: 14
Denominator: 6 **<---- ORIGINAL DENOMINATOR**
Multiply key with numerator: 398 (POSITIVE)
Invert Denominator: 0 (NEGATIVE)  **<------------ DENOMINATOR IS NOW ZERO??**
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)

Round Key: 562
Numerator: A
Denominator: -2
Multiply key with numerator: 118 (POSITIVE)
Invert Denominator: 0 (NEGATIVE)
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)

Round Key: 5D1
Numerator: 8
Denominator: 3
Multiply key with numerator: 584 (POSITIVE)
Invert Denominator: 0 (NEGATIVE)
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)
Recovered Key: 0 (NEGATIVE)
Key should = 4D2

      

In any case, the combination key is incorrect. What's going on here? Is there a workaround for this?

Here is my code:

BIGNUM *int2BN(int i)
{   
    BIGNUM *tmp = BN_new();
    BN_zero(tmp);

    int g;
    if(i < 0) { //If 'i' is negative
        for (g = 0; g > i; g--) {
            BN_sub(tmp, tmp, one);
        }
    } else { //If 'i' is positive
        for (g = 0; g < i; g++) {
            BN_add(tmp, tmp, one);
        }
    }
    return(tmp);
}   

static void
blah() {
int denomTmp, numTmp, numAccum, denomAccum;
int s, j;   
BIGNUM *accum[3], *bnNum, *bnDenom;
bnNum = BN_new();
bnDenom = BN_new();

/* Lagrange Interpolation */
for (s = 0; s < 3; s++) {
    numAccum = 1;
    denomAccum = 1;
    for (j = 0; j < 3; j++) {
        if(s == j) continue;
        else {
            /* 0 - i[k] = numTmp */
            numTmp = 0 - key[j].keynum;

            /* share - i[k] = denomTmp */
            denomTmp = key[s].keynum - key[j].keynum;

            /* Numerator accumulation: */
            numAccum *= numTmp;

            /* Denominator accumulation: */
            denomAccum *= denomTmp;
        }
    }
    accum[s] = BN_new();
    bnNum = int2BN(numAccum);
    bnDenom = int2BN(denomAccum);

    /* Multiply result by share */
    BN_mod_mul(accum[s], key[s].key, bnNum, q, ctx);

    /* Invert denominator */
    BN_mod_inverse(bnDenom, bnDenom, q, ctx);

    /* Multiply by inverted denominator */
    BN_mod_mul(accum[s], accum[s], bnDenom, q, ctx);

}

int a;
BIGNUM *total = BN_new();
BN_zero(total);
for(a = 0; a < 3; a++) { 
    BN_mod_add(total, total, accum[a], q, ctx);
}   

}

      

+3


source to share


1 answer


Use BN_div

. The rest is a module. That is rem = a % d

.



int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx);

BN_div() divides a by d and places the result in dv and the remainder in rem
(dv=a/d, rem=a%d). Either of dv and rem may be NULL, in which case the respective
value is not returned. The result is rounded towards zero; thus if a is negative,
the remainder will be zero or negative. For division by powers of 2, use
BN_rshift(3). 

      

+1


source







All Articles