Fastest way to check if two arrays have equivalent strings

I am trying to find the best way to check if two 2D arrays contain the same strings. Let's take the following example for a quick example:

>>> a
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> b
array([[6, 7, 8],
       [3, 4, 5],
       [0, 1, 2]])

      

In this case b=a[::-1]

. To check if two strings are equal:

>>>a=a[np.lexsort((a[:,0],a[:,1],a[:,2]))]
>>>b=b[np.lexsort((b[:,0],b[:,1],b[:,2]))]
>>> np.all(a-b==0)
True

      

It's great and pretty fast. However, the problem occurs when two lines are "closed":

array([[-1.57839867  2.355354   -1.4225235 ],
       [-0.94728367  0.         -1.4225235 ],
       [-1.57839867 -2.355354   -1.4225215 ]]) <---note ends in 215 not 235
array([[-1.57839867 -2.355354   -1.4225225 ],
       [-1.57839867  2.355354   -1.4225225 ],
       [-0.94728367  0.         -1.4225225 ]])

      

Within the 1E-5 tolerance, the two arrays are equal in rows, but lexsort will tell you otherwise. This could be solved by a different sort order, but I would like to get a more general case.

I was playing with the idea:

a=a.reshape(-1,1,3)
>>> a-b
array([[[-6, -6, -6],
        [-3, -3, -3],
        [ 0,  0,  0]],

       [[-3, -3, -3],
        [ 0,  0,  0],
        [ 3,  3,  3]],

       [[ 0,  0,  0],
        [ 3,  3,  3],
        [ 6,  6,  6]]])
>>> np.all(np.around(a-b,5)==0,axis=2)
array([[False, False,  True],
       [False,  True, False],
       [ True, False, False]], dtype=bool)
>>>np.all(np.any(np.all(np.around(a-b,5)==0,axis=2),axis=1))
True

      

This does not mean that the arrays are equal in rows, only if all points in b

are close to the value in a

. The number of lines can be several hundred and I need to do it quite a bit. Any ideas?

+3


source to share


1 answer


Your last code doesn't do what you think it does. What it tells you is whether each line in b

is close to a line in a

. If you change axis

that you use for external calls to np.any

and np.all

you can check whether each line is in a

close to a line in b

. If both lines in b

are close to line in a

, and each line in a

is close to line in b

, then the sets are equal. This is probably not very computationally efficient, but is probably very fast in numpy for moderately sized arrays:

def same_rows(a, b, tol=5) :
    rows_close = np.all(np.round(a - b[:, None], tol) == 0, axis=-1)
    return (np.all(np.any(rows_close, axis=-1), axis=-1) and
            np.all(np.any(rows_close, axis=0), axis=0))

>>> rows, cols = 5, 3
>>> a = np.arange(rows * cols).reshape(rows, cols)
>>> b = np.arange(rows)
>>> np.random.shuffle(b)
>>> b = a[b]
>>> a
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11],
       [12, 13, 14]])
>>> b
array([[ 9, 10, 11],
       [ 3,  4,  5],
       [ 0,  1,  2],
       [ 6,  7,  8],
       [12, 13, 14]])
>>> same_rows(a, b)
True
>>> b[0] = b[1]
>>> b
array([[ 3,  4,  5],
       [ 3,  4,  5],
       [ 0,  1,  2],
       [ 6,  7,  8],
       [12, 13, 14]])
>>> same_rows(a, b) # not all rows in a are close to a row in b
False

      



And for not too large arrays, the performance is reasonable, although it needs to build the array (rows, rows, cols)

:

In [2]: rows, cols = 1000, 10

In [3]: a = np.arange(rows * cols).reshape(rows, cols)

In [4]: b = np.arange(rows)

In [5]: np.random.shuffle(b)

In [6]: b = a[b]

In [7]: %timeit same_rows(a, b)
10 loops, best of 3: 103 ms per loop

      

+1


source







All Articles