Is there a better way to write this cumulative sum for a time series?

Given the following data:

sample <- xts(c( 1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,2,2,1,1,1,1,4,4,4,4,4,4,4,4,4),
          as.Date(x = "2014-11-03")+1:52)

      

I want to create the following:

           [,1]
2014-11-05    0
2014-11-06    0
2014-11-07    0
2014-11-08    0
2014-11-09    1
2014-11-10    2
2014-11-11    3
2014-11-12    4
2014-11-13    5
2014-11-14    6
2014-11-15    7
2014-11-16    8
2014-11-17    9
2014-11-18   10
2014-11-19   11
2014-11-20   12
2014-11-21   13
2014-11-22   14
2014-11-23   15
2014-11-24    0
2014-11-25    0
2014-11-26    0
2014-11-27    0
2014-11-28    0
2014-11-29    1
2014-11-30    2
2014-12-01    3
2014-12-02    4
2014-12-03    5
2014-12-04    6
2014-12-05    7
2014-12-06    8
2014-12-07    9
2014-12-08   10
2014-12-09   11
2014-12-10   12
2014-12-11    1
2014-12-12    2
2014-12-13    0
2014-12-14    0
2014-12-15    0
2014-12-16    0
2014-12-17    1
2014-12-18    2
2014-12-19    3
2014-12-20    4
2014-12-21    5
2014-12-22    6
2014-12-23    7
2014-12-24    8
2014-12-25    9

      

In other words, given a sequence of positive integers, I would like to make a cumulative sum starting from where the observation is not 1, and keep increasing it until the observation value decreases from the previous observation.

This is what I came up with:

require('xts')
sample <- xts(c( 1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,2,2,1,1,1,1,4,4,4,4,4,4,4,4,4),
              as.Date(x = "2014-11-03")+1:52)

# a vector of endpoints
ep <- c(1,which(diff(lag(sample,k=-1))<0),length(sample))
res <- period.apply(sample,ep,function(x){
  # Make the 1s into 0s
  x[x==1]=0
  # Make those that are not 0s into 1s
  x[x!=0] = 1
  # Now cumsum will give the desired results
  cumsum(x)
})

res <- Reduce(rbind,res)
res

      

Is there a better way to rewrite this? In particular, is it okay to always put the first and last indices at the endpoints, and can the function in period.apply()

be rewritten in a more concise way?

+3


source to share


2 answers


Here's an alternative using ave

:

out <- sample
out[] <- ave(sample != 1, cumsum(c(TRUE, diff(coredata(sample)) < 0)), FUN = cumsum)

identical(out[-1], res)
## [1] TRUE

      



Update Some code simplifications.

+4


source


Another alternative using data.table:

 data.table(coredata(sample))[
  ,list(cum={V1[V1==1] <- 0; cumsum(V1!=0)}),
  list(grp=cumsum(c(0,diff(V1))<0))]

      



Edit: indent code and better syntax

+4


source







All Articles