Python maze generator description
Welcome. Can someone explain to me what is going on in this code? I would like to know exactly how this works (it comes from http://rosettacode.org/wiki/Maze_generation#Python ).
from random import shuffle, randrange
def make_maze(w = 16, h = 8):
vis = [[0] * w + [1] for _ in range(h)] + [[1] * (w + 1)]
ver = [["| "] * w + ['|'] for _ in range(h)] + [[]]
hor = [["+--"] * w + ['+'] for _ in range(h + 1)]
def walk(x, y):
vis[y][x] = 1
d = [(x - 1, y), (x, y + 1), (x + 1, y), (x, y - 1)]
shuffle(d)
for (xx, yy) in d:
if vis[yy][xx]: continue
if xx == x: hor[max(y, yy)][x] = "+ "
if yy == y: ver[y][max(x, xx)] = " "
walk(xx, yy)
walk(randrange(w), randrange(h))
for (a, b) in zip(hor, ver):
print(''.join(a + ['\n'] + b))
make_maze()
source to share
I don't know anything about the maze generation, but I also got curious about how this piece of code works. Here are some ideas:
These two lines print the maze:
for (a, b) in zip(hor, ver):
print(''.join(a + ['\n'] + b))
So what happens if we put these lines right after the three lines that define vis
, ver
and hor
? We get the following:
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
You can even put these two lines right before the recursive call walk(xx,yy)
and see some steps in the evolution of the maze:
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+ +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+ + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+ + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+ + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+--+ + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+ + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+ + + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+ + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+ + + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+ + + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+ + + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+ + + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+ +--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+ + + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+ + + +--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | |
+--+--+ +--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+ +--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
[...]
Now let's focus on walk(x,y)
. As the name suggests and the printed output, this function goes around the maze, removing walls at random to build a path.
This call:
walk(randrange(w), randrange(h))
initializes a walk to a random location in the maze. Each cell in the grid is visited exactly once; visited cells are marked with vis
.
This line initializes an array with all four neighbors of the current cell:
d = [(x - 1, y), (x, y + 1), (x + 1, y), (x, y - 1)]
They are visited at random (thanks shuffle(d)
)
And these two lines are the ones that remove the walls when the maze path is being built:
# remove horizontal wall, "+--" turns into "+ "
if xx == x: hor[max(y, yy)][x] = "+ "
# remove vertical wall, "|" turns into " "
if yy == y: ver[y][max(x, xx)] = " "
This algorithm can be talked about in more detail (see Jongware's comment), but as far as is clear, this code is used, this is what you can do.
source to share