Calculation on multiple columns and aggregates using multiple factors

My data looks like this:

df <- data.frame(Price=seq(1, 1.5, 0.1),
                 Sales=seq(6, 1, -1),
                 Quality=c('A','A','A','B','B','B'),
                 Brand=c('F','P','P','P','F','F'))

      

Sometimes I need to do a complex calculation on multiple columns and aggregates on multiple factors. For a simplified example, if I want to get the distribution Revenue (= Price * Sales)

inside each Quality

and split into Brand

, I would do

df$Revenue <- df$Price*df$Sales

RevSumByQ <- aggregate(Revenue~Quality, data=df, sum)
colnames(RevSumByQ)[2] <- "RevSumByQ"
df <- merge(df, RevSumByQ)

RevSumWithinQByB <- aggregate(RevSumByQ~Brand, data=df, sum)
colnames(RevSumWithinQByB)[2] <- "RevSumWithinQByB"
df <- merge(df, RevSumWithinQByB)

df$RevDistWithinQByB = df$RevSumByQ/df$RevSumWithinQByB
df

  Brand Quality Price Sales Revenue RevSumByQ RevSumWithinQByB RevDistWithinQByB
1     F       A   1.0     6     6.0      16.3             32.7         0.4984709
2     F       B   1.4     2     2.8       8.2             32.7         0.2507645
3     F       B   1.5     1     1.5       8.2             32.7         0.2507645
4     P       A   1.1     5     5.5      16.3             40.8         0.3995098
5     P       A   1.2     4     4.8      16.3             40.8         0.3995098
6     P       B   1.3     3     3.9       8.2             40.8         0.2009804

      

If shown in the plot:

require(ggplot2)
ggplot(data=df, aes(x=Brand, y=RevDistWithinQByB, fill=Quality)) + geom_bar(stat='identity')

      

enter image description here

There must be a better way to draw this plot, but my main interest is in getting a dataframe with less intermediate results ( Revenue, RevSumByQ, RevSumWithinQByB

). I see the structure in my approach, so I wonder if there are more elegant solutions or if there are some features that make this task easier.

+3


source to share


3 answers


You may try dplyr



res <- df %>%
         group_by(Quality) %>% 
         mutate(Revenue= Price*Sales,RevSumByQ=sum(Revenue)) %>% 
         group_by(Brand) %>% 
         mutate(RevSumWithinQByB= sum(RevSumByQ),
             RevDistWithinQByB= RevSumByQ/RevSumWithinQByB ) 

      

+3


source


Here a data.table

:

library(data.table)
setDT(df)
##
df[,Revenue:=Price*Sales][
  ,RevSumByQ:=sum(Revenue),
  by=Quality][
    ,RevSumWithinQByB:=sum(RevSumByQ),
    by=Brand][
      ,RevDistWithinQByB:=RevSumByQ/RevSumWithinQByB]

      



And while I don't usually do this myself, you can call your code ggplot

from within the same object:

df[,Revenue:=Price*Sales][
  ,RevSumByQ:=sum(Revenue),
  by=Quality][
    ,RevSumWithinQByB:=sum(RevSumByQ),
    by=Brand][
      ,RevDistWithinQByB:=RevSumByQ/RevSumWithinQByB][
        ,{print(ggplot(
            data=.SD,
            aes(x=Brand,
                y=RevDistWithinQByB,
                fill=Quality))+
            geom_bar(stat="identity"))}]

      

+2


source


Basically (as @arun pointed out) you don't need the merges here and you can do everything using ave

from the R base. It also seems like it would be hard to skip the first two steps of the aggregation. Although you can skip the last calculation and put it right in ggplot

. Something like:

df$Revenue <- df$Price*df$Sales
df$RevSumByQ <- with(df, ave(Revenue, Quality, FUN = sum))
df$RevSumWithinQByB <- with(df, ave(RevSumByQ, Brand, FUN = sum))

require(ggplot2)
ggplot(data = df, 
       aes(x = Brand, y = RevSumByQ/RevSumWithinQByB, fill = Quality)) +
       geom_bar(stat = 'identity')

      

enter image description here

+2


source







All Articles