Sphere for Spherical Collision (C ++)

I am implementing some basic 3D physics engine. For ball collision, I am following this tutorial . I have problems with two moving spheres. I am guessing there may be some problem with how I find the "cut speed"

bool collidingDSmove(Sphere sphere){
    // Early Escape test: if the length of the movevec is less
    // than distance between the centers of these circles minus 
    // their radii, there no way they can hit.

      

In my test environment, the motion velocity vectors are (-2, -4, -2) and (1,2,1). Therefore, "shortVel" actually becomes larger than the original speeds.

    vec3 shortVel = sphere.velocity.substract(velocity);
    vec3 fromAtoBCenter = position.substract(sphere.position);
    float distSquare = fromAtoBCenter.getLengthSquare();
    float sumRadii = (radius + sphere.radius);
    distSquare -= sumRadii*sumRadii;
    if (shortVel.getLengthSquare() < distSquare){
        return false;
    }

    // Normalize the movevec
    vec3 N = shortVel.normalize();

    // Find C, the vector from the center of the moving 
    // circle A to the center of B
    vec3 C = sphere.position.substract(position);

    // D = N . C = ||C|| * cos(angle between N and C)
    float D = N.dot(C);

    // Another early escape: Make sure that A is moving 
    // towards B! If the dot product between the movevec and 
    // B.center - A.center is less that or equal to 0, 
    // A isn't isn't moving towards B
    if (D <= 0){
        return false;
    }
    // Find the length of the vector C
    float lengthCSquare = C.getLengthSquare();

    float F = (lengthCSquare)-(D * D);

    // Escape test: if the closest that A will get to B 
    // is more than the sum of their radii, there no 
    // way they are going collide
    float sumRadiiSquared = sumRadii * sumRadii;
    if (F >= sumRadiiSquared){
        return false;
    }

    // We now have F and sumRadii, two sides of a right triangle. 
    // Use these to find the third side, sqrt(T)
    double T = sumRadiiSquared - F;

    // If there is no such right triangle with sides length of 
    // sumRadii and sqrt(f), T will probably be less than 0. 
    // Better to check now than perform a square root of a 
    // negative number. 
    if (T < 0){
        return false;
    }

    // Therefore the distance the circle has to travel along 
    // movevec is D - sqrt(T)
    float distance = D - sqrt(T);

    // Get the magnitude of the movement vector
    float mag = velocity.getLength();

    // Finally, make sure that the distance A has to move 
    // to touch B is not greater than the magnitude of the 
    // movement vector. 
    if (mag < distance){
        return false;
    }

      

// *** the amount is not between 0 and 1

    float amount = shortVel.normalize().getLength() / velocity.getLength();
    // Set the length of the movevec so that the circles will just 
    // touch
    velocity = velocity.normalize().times(amount);
    sphere.velocity = sphere.velocity.normalize().times(amount);

    return true;
}

      

My vec3 class looks like this:

class vec3 {
public:
    float x; float y; float z;
    vec3() : x(0), y(0), z(0) { }
    vec3 substract(vec3 v){
        vec3 sub;
        sub.x = x - v.x;
        sub.y = y - v.y;
        sub.z = z - v.z;
        return sub;
    }
float getLength() {
        return sqrt(x*x + y*y + z*z);
    }
float getLengthSquare() {
        return x*x + y*y + z*z;
    }
vec3 normalize(){
        vec3 n;
        n.x = x / getLength();
        n.y = y / getLength();
        n.z = z / getLength();
        return n;
    }
float dot(vec3 v) {
        return x*v.x + y*v.y + z*v.z;
    }
}

      

Could you please explain to me what I am doing wrong here?

Here is my update function. Where deltaT is the time elapsed between 2 frames

void updateVelocity(double deltaT){
        velocity.x = velocity.x + acceleration.x*deltaT;
        velocity.y = velocity.y + acceleration.y*deltaT;
        velocity.z = velocity.z + acceleration.z*deltaT;
    }
    void updatePosition(double deltaT){
        position.x = position.x + velocity.x * deltaT + 0.5 * acceleration.x * deltaT * deltaT;
        position.y = position.y + velocity.y * deltaT + 0.5 * acceleration.y * deltaT * deltaT;
        position.z = position.z + velocity.z * deltaT + 0.5 * acceleration.z * deltaT * deltaT;
    }
    void update(double deltaT){
        updateVelocity(deltaT);
        updatePosition(deltaT);

    }

      

+3


source to share


1 answer


First create add and time functions in vec3.

If sphere s1 and sphere s2 at position p (vec3), velocity v (vec3), radius r (float) and mass m (float) collide, you can do:



// from s1 to s2
vec3 pDiff = s2.p.subtract(s1.p);
// collision detection
if (pDiff.getLength() >= s1.r + s2.r) {
    return;
}
// find direction from s1 to s2
vec3 dir = pDiff.normalize();
vec3 vDiff = s2.v.subtract(s1.v);
float fellingSpeed = vDiff.dot(dir);
// don't collide in this case
if (fellingSpeed >= 0) {
    return;
}
// perfect spheric collision
float speed1 = (2 * s2.m * fellingSpeed) / (s1.m + s2.m);
float speed2 = (fellingSpeed * (s2.m - s1.m)) / (s1.m + s2.m);
s1.v = s1.v.add(dir.times(speed1));
s2.v = s2.v.add(dir.times(speed2 - fellingSpeed));

      

Hope this helps.

+2


source







All Articles