"lag" in irregular time series

I have a data.frame that shows the current price and bid price of a stock and my signal at that time.

time            bid_price   ask_price   signal
10:10:01.000500 50.02       50.05       50.03
10:10:01.000855 50.02       50.03       50.05
10:10:01.000856 50.02       50.03       50.06

      

at 10: 10: 01.000856 and I have a signal at 50.06, I cannot use it. I can only use a signal 50 microseconds ago

So I need this data.frame result

at 10: 10: 01.000856, 50 microseconds ago, the time is 10: 01: 01.000806, so a useful signal that the time is 50.03

time            bid_price   ask_price   signal  signal_50microseconds_ago
10:10:01.000500 50.02       50.05       50.03   NA
10:10:01.000855 50.02       50.04       50.05   50.03
10:10:01.000856 50.02       50.04       50.06   50.03

      

Is there an R / python solution that generates a data.frame result? For example, say we first load the data.frame into an object xts

, then we could have

xts_obj$signal_50microseconds_ago <- get_time_lag_wish_this_function_exists(xts_obj$signal,lag=0.000050) 

      

Note. I don't think I can just use xts.lag

1, because I end up going back 50.05 down rather than 50.03

time            bid_price   ask_price   signal  signal_from_lag1
10:10:01.000500 50.02       50.05       50.03   NA
10:10:01.000855 50.02       50.04       50.05   50.03
10:10:01.000856 50.02       50.04       50.06   50.05

      

+3
r xts


source to share


1 answer


This is the approach I would take to align the values ​​with the last previous observation. It only uses the merge function xts

and na.locf()

to fill the merged time values ​​forward:

d <- read.table(stringsAsFactors=F, header=T, text="
time            bid_price   ask_price   signal
10:10:01.000500 50.02       50.05       50.03
10:10:01.000855 50.02       50.03       50.05
10:10:01.000856 50.02       50.03       50.06
")

t <- as.POSIXct(paste0("2015-05-28 ", d$time))
#format(t, "%Y-%m-%d %H:%M:%OS9")

library(xts)
d_xts <- xts(d[,-1], order.by=t)

##  Lag the signal by 50 microseconds:
signal_lag <- xts(d[,"signal"], order.by=t+0.000050)

merge_xts <- merge(d_xts, signal_lag)

##  Carry last lagged value forward:
merge_xts$signal_lag <- na.locf(merge_xts$signal_lag)

##  Finally subset back to only original rows:
merge_xts <- merge_xts[ !is.na(merge_xts$signal) ]

      



Result merge_xts

:

> merge_xts
                    bid_price ask_price
2015-05-28 10:10:01     50.02     50.05
2015-05-28 10:10:01     50.02     50.03
2015-05-28 10:10:01     50.02     50.03
                    signal signal_lag
2015-05-28 10:10:01  50.03         NA
2015-05-28 10:10:01  50.05      50.03
2015-05-28 10:10:01  50.06      50.03

      

+1


source to share







All Articles
Loading...
X
Show
Funny
Dev
Pics