Highly processed sieve of eratosthenes
Just for fun, I'm trying to implement pseudocode from this StackOverflow question for a heavily factorized sieve of Eratosthenes in C ++. I can't figure out why my code is returning both prime and non-prime numbers. Am I implementing them incorrectly for loops? Should I use while for loops? I suspect that I am not increasing the number of loops to process correctly. Any help would be greatly appreciated. I spent several hours trying to track down the flaw.
The GordonBGood pseudocode is inserted as comments and I used all the same variable names.
#include <iostream>
#include <vector>
#include <cmath>
const int limit = 1000000000;
const std::vector<int> r {23,29,31,37,41,43,47,53, 59,61,67,71,73,79,83, //positions + 19
89,97,101,103,107,109,113,121,127, 131,137,139,
143,149,151,157,163,167,169,173,179,181,187,191,193,
197,199,209,211,221,223,227,229};
int main()
{
// an array of length 11 times 13 times 17 times 19 = 46189 wheels initialized
// so that it doesn't contain multiples of the large wheel primes
// for n where n โ 210 ร w + x where w โ {0,...46189}, x in r: // already
// if (n mod cp) not equal to 0 where cp โ {11,13,17,19}: // no 2,3,5,7
// mstr(n) โ true else mstr(n) โ false // factors
std::vector<bool> mstr(limit);
int n;
for (int w=0; w <= 46189; ++w) {
for (auto x = begin(r); x != end(r); ++x) {
n = 210*w + *x;
if (n % 11 != 0 && n % 13 != 0 && n % 17 != 0 && n % 19 != 0)
mstr[n]=true;
else
mstr[n]=false;
}
}
// Initialize the sieve as an array of the smaller wheels with
// enough wheels to include the representation for limit
// for n where n โ 210 ร w + x, w โ {0,...(limit - 19) รท 210}, x in r:
// sieve(n) โ mstr(n mod (210 ร 46189)) // init pre-culled primes.
std::vector<bool> sieve(limit+1000);
for (int w=0; w <= (limit-19)/210; ++w) {
for (auto x = begin(r); x != end(r); ++x) {
n = 210*w + *x;
sieve[n] = mstr[(n % (210*46189))];
}
}
// Eliminate composites by sieving, only for those occurrences on the
// wheel using wheel factorization version of the Sieve of Eratosthenes
// for nยฒ โค limit when n โ 210 ร k + x where k โ {0..}, x in r
// if sieve(n):
// // n is prime, cull its multiples
// s โ nยฒ - n ร (x - 23) // zero'th modulo cull start position
// while c0 โค limit when c0 โ s + n ร m where m in r:
// c0d โ (c0 - 23) รท 210, cm โ (c0 - 23) mod 210 + 23 //means cm in r
// while c โค limit for c โ 210 ร (c0d + n ร j) + cm
// where j โ {0,...}:
// sieve(c) โ false // cull composites of this prime
int s, c, c0, c0d, cm, j;
for ( auto x = begin(r); x != end(r); ++x) {
for ( int k=0; (n=210*k + (*x)) <= sqrt(limit); ++k){
if (sieve[n]) {
s = n*n - n*((*x)-23);
for ( auto m = begin(r); (c0=s+n*(*m)) <= limit && m != end(r); ++m) {
c0d = (c0-23)/210;
cm = (c0-23)%210 + 23;
for ( int j=0; (c=210*(c0d+n*j)+cm) <= limit; ++j) {
sieve[c] = false;
}
}
}
}
}
// output 2, 3, 5, 7, 11, 13, 17, 19,
// for n โค limit when n โ 210 ร k + x where k โ {0..}, x in r:
// if sieve(n): output n
std::cout << "2\n3\n5\n7\n11\n13\n17\n19\n";
for ( auto x = begin(r); x != end(r); ++x) {
for ( int k = 0; (n=210*k + (*x)) <= limit; ++k) {
if (sieve[n]);
std::cout << n << std::endl;
}
}
std::cout << std::endl;
return 0;
}
+3
source to share
No one has answered this question yet
See similar questions:
or similar: