Modular reduction of large numbers

For a toy program, I need an efficient way to calculate

(2**64 * x) % m

      

where x

and m

are java long

, and **

denotes the exponent. This could be computed as

 BigInteger.valueOf(x).shiftLeft(64).mod(BigInteger.valueOf(m)).longValue()

      

or by repeatedly switching x

left and decreasing, but both are quite slow. This is not a premature optimization.

Clarifications

‣ Any algorithm using BigInteger

is likely to be slower than the above expression.

‣ You may assume that it is m

too big for int

otherwise

 long n = (1L<<32) % m; 
 return ((n*n) % m) * (x % m)) % m

      

...

‣ The slow shift and shrink algorithm is similar to

// assuming x >= 0
long shift32Left(long x, long m) {
    long result = x % m;
    for (int i=0; i<64; ++i) {
        x <<= 1;
        // here, `x<0` handles overflow
        if (x<0 || x>=m) {
            x -= m;
        }
    }
}

      

+3


source to share


1 answer


General form: (a1 * a2 * a3 ... * an) % m = [(a1 % m) * (a2 % m) * ... * (a3 % m) ] % m

Apply the formula above:

(2^64 * x) % m = (((2^64) % m) * (x % m)) % m

For the first part: 2^64 mod m

. I can make a more general case 2^t mod m

. I have this pseudocode. In will work at N(log t)

times. This pseudocode for t and m only is a normal integer. Based on the range of t and m, you can correct the computation of the inner function to use BigInteger at a suitable point.

long solve(long t, long m) {
   if (t == 0) return 1 % m;
   if (t == 1) return t % m;
   long res = solve(t/2, m);
   res = (res * res) % m;
   if (t % 2 == 1) res = (res * 2) % m;
   return res;
}

      



Thanks for OldCurmudgeon. There can be one simple line above the code:

BigInteger res = (new BigInteger("2")).
   modPow(new BigInteger("64"), new BigInteger("" + m));

      

Here is the implementation modPow

. This implementation takes different approaches. The algorithm starts with m: splits m into m = 2^k*q

. Then find modulo 2 ^ k and q, then use Chinese Reminder theorem

to compile the result.

 public BigInteger modPow(BigInteger exponent, BigInteger m) {
        if (m.signum <= 0)
            throw new ArithmeticException("BigInteger: modulus not positive");

        // Trivial cases
        if (exponent.signum == 0)
            return (m.equals(ONE) ? ZERO : ONE);

        if (this.equals(ONE))
            return (m.equals(ONE) ? ZERO : ONE);

        if (this.equals(ZERO) && exponent.signum >= 0)
            return ZERO;

        if (this.equals(negConst[1]) && (!exponent.testBit(0)))
            return (m.equals(ONE) ? ZERO : ONE);

        boolean invertResult;
        if ((invertResult = (exponent.signum < 0)))
            exponent = exponent.negate();

        BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
                           ? this.mod(m) : this);
        BigInteger result;
        if (m.testBit(0)) { // odd modulus
            result = base.oddModPow(exponent, m);
        } else {
            /*
             * Even modulus.  Tear it into an "odd part" (m1) and power of two
             * (m2), exponentiate mod m1, manually exponentiate mod m2, and
             * use Chinese Remainder Theorem to combine results.
             */

            // Tear m apart into odd part (m1) and power of 2 (m2)
            int p = m.getLowestSetBit();   // Max pow of 2 that divides m

            BigInteger m1 = m.shiftRight(p);  // m/2**p
            BigInteger m2 = ONE.shiftLeft(p); // 2**p

            // Calculate new base from m1
            BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
                                ? this.mod(m1) : this);

            // Caculate (base ** exponent) mod m1.
            BigInteger a1 = (m1.equals(ONE) ? ZERO :
                             base2.oddModPow(exponent, m1));

            // Calculate (this ** exponent) mod m2
            BigInteger a2 = base.modPow2(exponent, p);

            // Combine results using Chinese Remainder Theorem
            BigInteger y1 = m2.modInverse(m1);
            BigInteger y2 = m1.modInverse(m2);

            if (m.mag.length < MAX_MAG_LENGTH / 2) {
                result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
            } else {
                MutableBigInteger t1 = new MutableBigInteger();
                new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1);
                MutableBigInteger t2 = new MutableBigInteger();
                new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2);
                t1.add(t2);
                MutableBigInteger q = new MutableBigInteger();
                result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
            }
        }

        return (invertResult ? result.modInverse(m) : result);
    }

      

For the second part: you can easily use BigInteger

or just normal calculation, depends on the range of x and m.

+2


source







All Articles