Cross validation for custom SVM kernel in scikit-learn

I would like to do grid search through cross validation for a custom SVM core using scikit-learn. More precisely following this example I want to define a kernel function like

def my_kernel(x, y):
"""
We create a custom kernel:
k(x, y) = x * M *y.T          
"""
return np.dot(np.dot(x, M), y.T)

      

where M is a kernel parameter (for example, gamma in a Gaussian kernel).

I want to pass this M parameter via GridSearchCV with something like

parameters = {'kernel':('my_kernel'), 'C':[1, 10], 'M':[M1,M2]}
svr = svm.SVC()
clf = grid_search.GridSearchCV(svr, parameters)

      

So my question is, how do I define my_kernel so that the M variable is set by the GridSearchCV?

+3


source to share


1 answer


You may need to create a wrapper class. Something like:



class MySVC(BaseEstimator,ClassifierMixin):
    def __init__( self, 
              # all the SVC attributes
              M ):
         self.M = M
         # etc...

    def fit( self, X, y ):
         kernel = lambda x,y : np.dot(np.dot(x,M),y.T)
         self.svc_ = SVC( kernel=kernel, # the other parameters )
         return self.svc_.fit( X, y )
    def predict( self, X ):
         return self.svc_.predict( X )
    # et cetera

      

0


source







All Articles