Combining multiple data frames and calculating the average
I have three data frames as shown below. I want to combine them into one data frame according to Lon and Lat and average 3 values ββfor each cell. I read this ( calculate average over multiple data frames ) and tried using aggregate to no avail .... any pointers appreciated.
> head(CSR.GRACE[,c(1:14)],10)
Lon Lat January February March April May June July August September October November December
1 28.5 -4.5 17.710425 13.855327 12.385712 13.558101 12.789865 6.913783 1.03770075 -5.3901741 -6.6351015 -7.661375 -3.09337944 6.0659410
2 29.5 -4.5 14.010154 10.257435 9.009641 10.275778 9.598241 5.166972 0.73570247 -4.2733162 -5.0861417 -5.850192 -2.93521806 4.1240150
3 30.5 -4.5 16.288443 10.467614 9.275714 10.904162 10.228808 5.364853 0.50089883 -4.7478741 -5.4320069 -6.316568 -3.80160315 3.8494745
4 31.5 -4.5 18.560677 9.932461 9.239592 11.037748 10.551886 5.281853 0.01181973 -4.9034324 -5.3504391 -6.438050 -4.41695714 3.3432301
5 32.5 -4.5 10.171202 4.476512 4.509140 5.448872 5.338991 2.556262 -0.22646611 -2.3274204 -2.4376636 -3.103697 -2.27586145 1.3641930
6 33.5 -4.5 14.040068 5.349344 5.772618 7.158792 7.121341 3.407587 -0.30616689 -2.6800099 -2.7955420 -3.803622 -2.77898997 1.4021380
> head(GFZ.GRACE[,c(1:14)],10)
Lon Lat January February March April May June July August September October November December
1 28.5 -4.5 15.642782 15.521720 11.823875 19.825865 17.335761 11.208188 5.080615 -3.0897644 -5.733351 -4.196604 -1.6697661 10.744696
2 29.5 -4.5 12.164074 10.931418 8.622238 15.341911 12.969769 8.521280 4.072790 -2.4301791 -4.551170 -3.055914 -1.2260079 7.592880
3 30.5 -4.5 13.579305 10.267520 8.787406 16.567715 13.745143 9.121496 4.497849 -2.6723491 -5.022949 -3.269881 -1.0691039 7.377143
4 31.5 -4.5 14.501465 8.600480 8.259757 16.981533 14.054429 9.318550 4.582672 -2.7917893 -5.249895 -3.636936 -0.5141342 6.770836
5 32.5 -4.5 7.311216 3.249596 3.513870 8.430777 6.941659 4.572560 2.203461 -1.4106516 -2.661226 -2.113089 0.2459282 3.049897
6 33.5 -4.5 9.121348 3.113245 3.584976 11.040761 8.732950 5.772059 2.811168 -1.8554437 -3.524447 -3.272863 1.2493973 3.750694
> head(JPL.GRACE[,c(1:14)],10)
Lon Lat January February March April May June July August September October November December
1 28.5 -4.5 19.559790 14.544438 12.035112 13.944141 11.931011 7.513007 3.095003 -3.6165702 -6.5945043 -7.2498567 -4.5402436 6.3935236
2 29.5 -4.5 15.740160 11.192191 8.549782 10.783359 9.401173 5.834498 2.267822 -2.6354346 -4.8939197 -5.5912996 -3.7295148 4.1461123
3 30.5 -4.5 18.984714 12.014807 8.510139 11.628697 10.635699 6.448064 2.260429 -2.6979695 -5.2102337 -6.2646164 -4.2713238 3.5089825
4 31.5 -4.5 22.794356 11.993054 8.162500 11.813746 11.747350 6.955983 2.164615 -2.5707902 -5.3448873 -6.7473006 -4.5777496 2.5609555
5 32.5 -4.5 13.233634 5.606305 3.880347 5.753024 6.388978 3.742596 1.096214 -1.1103189 -2.6367831 -3.4102675 -2.2860237 0.7826054
6 33.5 -4.5 19.260989 6.761722 4.978247 7.373498 9.135645 5.421030 1.706414 -1.0796434 -3.3122886 -4.2114588 -2.8110246 0.4825075
source to share
You can do:
library(data.table)
rbindlist(list(JPL.GRACE,GFZ.GRACE,CSR.GRACE))[,lapply(.SD,mean), list(Lon, Lat)]
Clarifications
Yours data.frames
are placed on list
and 'overlaid contours' using rbindlist
(which returns data.table
). We do this because yours data.frame
has the same structure (same number and name of columns, same data type). An alternative approach would be to do do.call(rbind, list(JPL.GRACE,GFZ.GRACE,CSR.GRACE))
.
Then we iterate over each individual pair Lon, Lat
. .SD
presents data.table
associated with each pair. You can see this by running:
dt = rbindlist(list(JPL.GRACE,GFZ.GRACE,CSR.GRACE))
dt[,print(.SD), list(Lon, Lat)]
For each of these, .SD
we simply iterate over the columns and calculate the means.
source to share
This can be done very easily with a 3-sided array using 1:2
both "MARGIN":
library(abind)
temp_array <- abind(CSR.GRACE, GFZ.GRACE, JPL.GRACE, along=3)
res <- apply(temp_array, 1:2, mean)
Here's a simple example:
install.packages('abind')
x <- matrix(1:12,3,4)
y <- x+100; z= y-50
apply( abind::abind(x,y,z, along=3), 1:2, mean)
[,1] [,2] [,3] [,4]
[1,] 51 54 57 60
[2,] 52 55 58 61
[3,] 53 56 59 62
source to share
Maybe a package can help you: sqldf
library(sqldf)
df1 <- CSR.GRACE[,c(1:14)]
df2 <- GFZ.GRACE[,c(1:14)]
df3 <- JPL.GRACE[,c(1:14)]
# This could be done with rbind(), but I'll use sqldf()
# I'm assuming all data frames have the same columns:
df <- sqldf('select * from df1
union all select * from df2
union all select * from df3')
# The average can be done also with sqldf (just a demo)
sqldf('select Lon, Lat, avg(January) as jan, avg(February) as feb
from df
group by Lon, Lat')
There may be better solutions out there, but this is the easy way.
Hope it helps
source to share