Rotating data in pandas multi-index data

I have a DataFrame MultiIndex, this is only partially. Year 2007 to 2015 with the same locations for each year.

                Jan   Feb   Mar   Apr   May  June  July   Aug  Sept   Oct  \
Year Place                                                                     
2007 Johore       1.26  1.07  1.21  1.27  1.33  1.28  1.67  1.88  1.89  1.86   
     Kedah        1.20  1.27  1.50  1.38  1.38  1.52  1.84  2.09  2.08  2.02   
     Kelantan     0.92  0.90  1.01  1.10  1.07  0.87  0.93  1.02  1.08  1.17   
     Malacca      1.62  1.45  1.64  1.52  1.50  1.40  1.75  1.80  2.03  2.14   
     N. Sembilan  0.98  0.94  1.11  1.07  1.10  1.16  1.46  1.58  1.61  1.71   

                   Nov   Dec  
Year Place                    
2007 Johore       1.95  1.72  
     Kedah        1.79  1.39  
     Kelantan     1.29  0.97  
     Malacca      2.44  2.13  
     N. Sembilan  1.75  1.58  

      

I want to rotate the data and get a single index frame with an index that is months (e.g. 2007-Jan, 2007-Feb) and the columns are different.

I tried Pahang as an example and did:

In [14]:

Pahang=df.xs('Pahang',level='Place')
In [15]:

Pahang.unstack().unstack().unstack()
Out[15]:
Year      
2007  Jan     1.19
      Feb     1.01
      Mar     1.13
      Apr     1.19
      May     1.24
      June    1.17
      July    1.43
      Aug     1.59
      Sept    1.63
      Oct     1.64
      Nov     1.82
      Dec     1.31
2008  Jan     1.57
      Feb     1.36
      Mar     1.56
...
2014  Oct     1.87
      Nov     1.74
      Dec     1.09
2015  Jan     0.93
      Feb     1.02
      Mar     1.28
      Apr     1.51
      May      NaN
      June     NaN
      July     NaN
      Aug      NaN
      Sept     NaN
      Oct      NaN
      Nov      NaN
      Dec      NaN
Length: 108, dtype: float64

      

I am getting Pahang column how I want. Instead of doing it one place at a time, I'm wondering if there is a way to get around all the places faster. Thank!

+3


source to share


4 answers


You can do the conversion for everyone Places

and then select only one of them.



import pandas as pd
import numpy as np

# your data
# ===================================
multi_index = pd.MultiIndex.from_product([np.arange(2007,2016,1), 'A B C D E'.split()], names=['Year', 'Place'])
df = pd.DataFrame( np.random.randn(45,12), columns='Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec'.split(), index=multi_index)

df


               Jan     Feb     Mar   ...       Oct     Nov     Dec
Year Place                           ...                          
2007 A     -0.1512  0.7274 -0.3218   ...    1.2547 -1.8408  1.2585
     B      0.0856 -1.0458 -1.1428   ...    1.0194  1.1958  0.4905
     C     -1.2021 -0.6989 -0.0486   ...   -0.8053 -0.4929  1.6475
     D     -1.9948 -0.3465  1.3036   ...   -0.2490  0.6285 -0.0568
     E      0.0928 -1.3905  0.7203   ...   -0.1138  2.9552 -0.0272
2008 A     -1.2595  1.3072  0.6121   ...   -1.4275  0.8769  2.0671
     B      0.3611 -0.4187 -2.9609   ...   -1.2944  1.2752 -0.0947
     C      1.6492  0.0340 -0.9743   ...    0.0550  1.4135  0.8862
     D      0.9034 -0.2957  0.2152   ...    1.0947 -0.2405  0.0367
     E      0.9566  1.1927  0.0852   ...    0.7396  0.8240 -1.6628
...            ...     ...     ...   ...       ...     ...     ...
2014 A      0.7478 -0.8905  0.6238   ...   -1.0907 -0.2919  0.3261
     B      3.6764 -0.0601  1.2751   ...    0.3294 -1.3375 -1.5087
     C      2.3460 -0.4181  0.0607   ...   -0.8270  0.0536 -0.4353
     D      0.9733 -0.6863  0.5278   ...   -1.8206  0.4788  1.1438
     E     -0.3514  2.4570 -0.8567   ...    1.3434 -1.5634 -0.9984
2015 A      1.2849 -1.0657 -0.1173   ...   -0.1733  0.0441  0.0922
     B      0.5802 -0.5912  1.1193   ...   -0.1296 -0.6374 -1.7727
     C     -0.5026 -1.3111 -0.5499   ...    0.7308  1.2570  0.8733
     D     -1.6482 -0.2213  0.3336   ...   -1.3141 -2.0377 -1.1468
     E     -2.0796 -0.2808 -1.4079   ...   -0.3052  0.7999  0.3516

[45 rows x 12 columns]

# processing
# ==================================
res = df.stack().unstack(level='Place')

Place           A       B       C       D       E
Year                                             
2007 Jan  -0.1512  0.0856 -1.2021 -1.9948  0.0928
     Feb   0.7274 -1.0458 -0.6989 -0.3465 -1.3905
     Mar  -0.3218 -1.1428 -0.0486  1.3036  0.7203
     Apr  -1.4641  2.0384  0.6518  0.8756 -1.4627
     May  -0.8896 -1.6627  0.6990  0.2008  0.7423
     June -0.5339 -0.6629  0.1121  0.3618  1.3838
     July -0.4851  0.6544  0.5251  0.3394 -0.7016
     Aug  -1.2445  0.9671 -1.0684 -0.4776 -0.2936
     Sept  1.1330 -0.7543  1.6029  0.5543  0.3234
     Oct   1.2547  1.0194 -0.8053 -0.2490 -0.1138
...           ...     ...     ...     ...     ...
2015 Mar  -0.1173  1.1193 -0.5499  0.3336 -1.4079
     Apr  -1.0528  0.2421  0.3419 -2.1137 -0.2836
     May  -1.0709 -0.1794 -0.2682 -0.3226  0.8654
     June -1.4538 -0.7313  0.3177 -1.4008  1.1357
     July -1.6210 -0.3815 -0.9876  0.1019  1.7450
     Aug   0.5692  0.7679  1.1893 -0.9612  0.0903
     Sept  0.2371  0.6740  0.9204 -0.2909 -0.8197
     Oct  -0.1733 -0.1296  0.7308 -1.3141 -0.3052
     Nov   0.0441 -0.6374  1.2570 -2.0377  0.7999
     Dec   0.0922 -1.7727  0.8733 -1.1468  0.3516

[108 rows x 5 columns]


# select one place
res['A']

Year      
2007  Jan    -0.1512
      Feb     0.7274
      Mar    -0.3218
      Apr    -1.4641
      May    -0.8896
      June   -0.5339
      July   -0.4851
      Aug    -1.2445
      Sept    1.1330
      Oct     1.2547
               ...  
2015  Mar    -0.1173
      Apr    -1.0528
      May    -1.0709
      June   -1.4538
      July   -1.6210
      Aug     0.5692
      Sept    0.2371
      Oct    -0.1733
      Nov     0.0441
      Dec     0.0922
Name: A, dtype: float64

      

+3


source


Instead of using unstack

to exchange level indices, you can use swaplevel

:

In [157]: df.xs('Johore',level='Place').unstack().swaplevel(0,1)
Out[157]: 
Year      
2007  Jan     1.26
      Feb     1.07
      Mar     1.21
      Apr     1.27
      May     1.33
      June    1.28
      July    1.67
      Aug     1.88
      Sept    1.89
      Oct     1.86
dtype: float64

      



There is also a method reorder_levels

that can be useful if your MultiIndex has many levels and needs to do more than one swap.

+2


source


I was thinking about the same as @HappyLeapSecond, but I'll add this because it's not exactly the same and is a bit more general (for all lines, not just one).

First, I'm going to use a slightly different set of sample data. Also note that I am posting without multi-index because sibling index is easier to copy and paste in pandas.

   year     place   Jan   Feb   Mar   Apr   May  June  July   Aug
0  2007    Johore  1.26  1.07  1.21  1.27  1.33  1.28  1.67  1.88
1  2007     Kedah  1.20  1.27  1.50  1.38  1.38  1.52  1.84  2.09
2  2007  Kelantan  0.92  0.90  1.01  1.10  1.07  0.87  0.93  1.02
3  2007   Malacca  1.62  1.45  1.64  1.52  1.50  1.40  1.75  1.80
4  2008    Johore  1.26  1.07  1.21  1.27  1.33  1.28  1.67  1.88
5  2008     Kedah  1.20  1.27  1.50  1.38  1.38  1.52  1.84  2.09
6  2008  Kelantan  0.92  0.90  1.01  1.10  1.07  0.87  0.93  1.02
7  2008   Malacca  1.62  1.45  1.64  1.52  1.50  1.40  1.75  1.80

      

Then set the index so that it is comparable to the one in the question:

df = df.reset_index(drop=True).set_index(['year','place'])

                Jan   Feb   Mar   Apr   May  June  July   Aug
year place                                                   
2007 Johore    1.26  1.07  1.21  1.27  1.33  1.28  1.67  1.88
     Kedah     1.20  1.27  1.50  1.38  1.38  1.52  1.84  2.09
     Kelantan  0.92  0.90  1.01  1.10  1.07  0.87  0.93  1.02
     Malacca   1.62  1.45  1.64  1.52  1.50  1.40  1.75  1.80
2008 Johore    1.26  1.07  1.21  1.27  1.33  1.28  1.67  1.88
     Kedah     1.20  1.27  1.50  1.38  1.38  1.52  1.84  2.09
     Kelantan  0.92  0.90  1.01  1.10  1.07  0.87  0.93  1.02
     Malacca   1.62  1.45  1.64  1.52  1.50  1.40  1.75  1.80

      

And then some switching, resorting, etc. The main "problem" you have with your data is that you start with year on the row axis but month on the column axis. Therefore, you need to move the year indexing from row to column. This is done with unstack(level='year')

. The rest is just a matter of cleaning up.

df.unstack(level='year').swaplevel(0,1,axis=1).T.sortlevel(0)

place      Johore  Kedah  Kelantan  Malacca
year                                       
2007 Jan     1.26   1.20      0.92     1.62
     Feb     1.07   1.27      0.90     1.45
     Mar     1.21   1.50      1.01     1.64
     Apr     1.27   1.38      1.10     1.52
     May     1.33   1.38      1.07     1.50
     June    1.28   1.52      0.87     1.40
     July    1.67   1.84      0.93     1.75
     Aug     1.88   2.09      1.02     1.80
2008 Jan     1.26   1.20      0.92     1.62
     Feb     1.07   1.27      0.90     1.45
     Mar     1.21   1.50      1.01     1.64
     Apr     1.27   1.38      1.10     1.52
     May     1.33   1.38      1.07     1.50
     June    1.28   1.52      0.87     1.40
     July    1.67   1.84      0.93     1.75
     Aug     1.88   2.09      1.02     1.80

      

Edit to add: . This last line can be simplified with @ JianxunLi's solution.

df.stack().unstack(level='place')

      

This is the best way to solve the problem of getting the year / month on the same index and putting on the opposite index, but I'll leave this answer here for the moment when an alternative method and explanation is helpful.

+2


source


You must use pandas.pivot

. Example: Pandas Transpose Inside a Data Frame

0


source







All Articles