Using pandas' group with offset
2 answers
I believe what you want pd.Series.expanding
df.groupby('id').val.apply(lambda x: x.expanding().mean().shift())
0 NaN
1 1.0
2 1.5
3 NaN
4 4.0
5 NaN
Name: val, dtype: float64
+2
source to share
It seems to me what you need groupby
with shift
and rolling
, the window size can be set to a scalar:
df['val']=df.groupby('id')['val'].apply(lambda x: x.shift().rolling(2, min_periods=1).mean())
print (df)
id val
0 0 NaN
1 0 1.0
2 0 1.5
3 1 NaN
4 1 4.0
5 2 NaN
Thanks 3novak
for the comment - you can set the window size to the maximum group length:
f = lambda x: x.shift().rolling(df['id'].value_counts().iloc[0], min_periods=1).mean()
df['val'] = df.groupby('id')['val'].apply(f)
print (df)
id val
0 0 NaN
1 0 1.0
2 0 1.5
3 1 NaN
4 1 4.0
5 2 NaN
+2
source to share