Svg approximation of elliptical arc in canvas with javascript

I am trying to create an elliptical arc by approximating a Bezier curve as in post https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/

However, my implementation doesn't seem to give the correct result. (The red line is SVG and the black line is the path to the canvas)

This is my code

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

// M100,350
// a45,35 -30 0,1 50,-25

canvas.width = document.body.clientWidth;
canvas.height = document.body.clientHeight;
ctx.strokeWidth = 2;
ctx.strokeStyle = "#000000";

function clamp(value, min, max) {
  return Math.min(Math.max(value, min), max)
}

function svgAngle(ux, uy, vx, vy ) {
  var dot = ux*vx + uy*vy;
  var len = Math.sqrt(ux*ux + uy*uy) * Math.sqrt(vx*vx + vy*vy);

  var ang = Math.acos( clamp(dot / len,-1,1) );
  if ( (ux*vy - uy*vx) < 0)
    ang = -ang;
  return ang;
}

function generateBezierPoints(rx, ry, phi, flagA, flagS, x1, y1, x2, y2) {
  var rX = Math.abs(rx);
  var rY = Math.abs(ry);

  var dx2 = (x1 - x2)/2;
  var dy2 = (y1 - y2)/2;

  var x1p =  Math.cos(phi)*dx2 + Math.sin(phi)*dy2;
  var y1p = -Math.sin(phi)*dx2 + Math.cos(phi)*dy2;

  var rxs = rX * rX;
  var rys = rY * rY;
  var x1ps = x1p * x1p;
  var y1ps = y1p * y1p;

  var cr = x1ps/rxs + y1ps/rys;
  if (cr > 1) {
    var s = Math.sqrt(cr);
    rX = s * rX;
    rY = s * rY;
    rxs = rX * rX;
    rys = rY * rY;
  }

  var dq = (rxs * y1ps + rys * x1ps);
  var pq = (rxs*rys - dq) / dq;
  var q = Math.sqrt( Math.max(0,pq) );
  if (flagA === flagS)
    q = -q;
  var cxp = q * rX * y1p / rY;
  var cyp = - q * rY * x1p / rX;

  var cx = Math.cos(phi)*cxp - Math.sin(phi)*cyp + (x1 + x2)/2;
  var cy = Math.sin(phi)*cxp + Math.cos(phi)*cyp + (y1 + y2)/2;

  var theta = svgAngle( 1,0, (x1p-cxp) / rX, (y1p - cyp)/rY );

  var delta = svgAngle(
    (x1p - cxp)/rX, (y1p - cyp)/rY,
    (-x1p - cxp)/rX, (-y1p-cyp)/rY);

  delta = delta - Math.PI * 2 * Math.floor(delta / (Math.PI * 2));

  if (!flagS)
    delta -= 2 * Math.PI;

  var n1 = theta, n2 = delta;


  // E(n)
  // cx +acosθcosη−bsinθsinη
  // cy +asinθcosη+bcosθsinη
  function E(n) {
    var enx = cx + rx * Math.cos(phi) * Math.cos(n) - ry * Math.sin(phi) * Math.sin(n);
    var eny = cy + rx * Math.sin(phi) * Math.cos(n) + ry * Math.cos(phi) * Math.sin(n);
    return {x: enx,y: eny};
  }

  // E'(n)
  // −acosθsinη−bsinθcosη
  // −asinθsinη+bcosθcosη
  function Ed(n) {
    var ednx = -1 * rx * Math.cos(phi) * Math.sin(n) - ry * Math.sin(phi) * Math.cos(n);
    var edny = -1 * rx * Math.sin(phi) * Math.sin(n) + ry * Math.cos(phi) * Math.cos(n);
    return {x: ednx, y: edny};
  }

  var en1 = E(n1);
  var en2 = E(n2);
  var edn1 = Ed(n1);
  var edn2 = Ed(n2);

  var alpha = Math.sin(n2 - n1) * (Math.sqrt(4 + 3 * Math.pow(Math.tan((n2 - n1)/2), 2)) - 1)/3;

  console.log(en1, en2);

  return {
    cpx1: en1.x + alpha*edn1.x,
    cpy1: en1.y + alpha*edn1.y,
    cpx2: en2.x - alpha*edn2.x,
    cpy2: en2.y - alpha*edn2.y
  };
}

// M100,100
ctx.moveTo(100,100)
// a45,35 -30 0,1 50,-25
cp = generateBezierPoints(
  45,35,                            // Radii
  -30 * Math.PI / 180,              // xAngle
  0,                                // Large arc flag
  1,                                // Sweep flag
  100,100,                          // Endpoint1
  100 + 50, 100 - 25                // Endpoint2
  );
ctx.bezierCurveTo(cp.cpx1,cp.cpy1,cp.cpx2,cp.cpy2,150,75);
ctx.stroke()

      

I need help figuring out where I'm going wrong

UPDATE:

I went through the mail a couple more times and there is one piece of the post that I don't quite understand, which may also be missing in my implementation.

All I had to do was split the angle range into small sections to get a good approximation. I didn't quite understand the error calculations in the docs, but found another article stating that π / 2 divisions give a potential error in one pixel at a sufficiently high resolution. So I chose π / 4 to provide smooth animation even for partial arcs on high density mobile devices.

I don't understand what the author means by splitting angles ...

+3


source to share


1 answer


So apparently an elliptical arc cannot be approximated by a single Bezier curve, so it takes multiple Bezier curves, dividing the two angles into ranges.



var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

// M100,350
// a45,35 -30 0,1 50,-25

canvas.width = document.body.clientWidth;
canvas.height = document.body.clientHeight;
ctx.strokeWidth = 2;
ctx.strokeStyle = "#000000";
function clamp(value, min, max) {
  return Math.min(Math.max(value, min), max)
}

function svgAngle(ux, uy, vx, vy ) {
  var dot = ux*vx + uy*vy;
  var len = Math.sqrt(ux*ux + uy*uy) * Math.sqrt(vx*vx + vy*vy);

  var ang = Math.acos( clamp(dot / len,-1,1) );
  if ( (ux*vy - uy*vx) < 0)
    ang = -ang;
  return ang;
}

function generateBezierPoints(rx, ry, phi, flagA, flagS, x1, y1, x2, y2) {
  var rX = Math.abs(rx);
  var rY = Math.abs(ry);

  var dx2 = (x1 - x2)/2;
  var dy2 = (y1 - y2)/2;

  var x1p =  Math.cos(phi)*dx2 + Math.sin(phi)*dy2;
  var y1p = -Math.sin(phi)*dx2 + Math.cos(phi)*dy2;

  var rxs = rX * rX;
  var rys = rY * rY;
  var x1ps = x1p * x1p;
  var y1ps = y1p * y1p;

  var cr = x1ps/rxs + y1ps/rys;
  if (cr > 1) {
    var s = Math.sqrt(cr);
    rX = s * rX;
    rY = s * rY;
    rxs = rX * rX;
    rys = rY * rY;
  }

  var dq = (rxs * y1ps + rys * x1ps);
  var pq = (rxs*rys - dq) / dq;
  var q = Math.sqrt( Math.max(0,pq) );
  if (flagA === flagS)
    q = -q;
  var cxp = q * rX * y1p / rY;
  var cyp = - q * rY * x1p / rX;

  var cx = Math.cos(phi)*cxp - Math.sin(phi)*cyp + (x1 + x2)/2;
  var cy = Math.sin(phi)*cxp + Math.cos(phi)*cyp + (y1 + y2)/2;

  var theta = svgAngle( 1,0, (x1p-cxp) / rX, (y1p - cyp)/rY );

  var delta = svgAngle(
    (x1p - cxp)/rX, (y1p - cyp)/rY,
    (-x1p - cxp)/rX, (-y1p-cyp)/rY);

  delta = delta - Math.PI * 2 * Math.floor(delta / (Math.PI * 2));

  if (!flagS)
    delta -= 2 * Math.PI;

  var n1 = theta, n2 = delta;


  // E(n)
  // cx +acosθcosη−bsinθsinη
  // cy +asinθcosη+bcosθsinη
  function E(n) {
    var enx = cx + rx * Math.cos(phi) * Math.cos(n) - ry * Math.sin(phi) * Math.sin(n);
    var eny = cy + rx * Math.sin(phi) * Math.cos(n) + ry * Math.cos(phi) * Math.sin(n);
    return {x: enx,y: eny};
  }

  // E'(n)
  // −acosθsinη−bsinθcosη
  // −asinθsinη+bcosθcosη
  function Ed(n) {
    var ednx = -1 * rx * Math.cos(phi) * Math.sin(n) - ry * Math.sin(phi) * Math.cos(n);
    var edny = -1 * rx * Math.sin(phi) * Math.sin(n) + ry * Math.cos(phi) * Math.cos(n);
    return {x: ednx, y: edny};
  }

  var n = [];
  n.push(n1);

  var interval = Math.PI/4;

  while(n[n.length - 1] + interval < n2)
    n.push(n[n.length - 1] + interval)

  n.push(n2);

  function getCP(n1, n2) {
    var en1 = E(n1);
    var en2 = E(n2);
    var edn1 = Ed(n1);
    var edn2 = Ed(n2);

    var alpha = Math.sin(n2 - n1) * (Math.sqrt(4 + 3 * Math.pow(Math.tan((n2 - n1)/2), 2)) - 1)/3;

    console.log(en1, en2);

    return {
      cpx1: en1.x + alpha*edn1.x,
      cpy1: en1.y + alpha*edn1.y,
      cpx2: en2.x - alpha*edn2.x,
      cpy2: en2.y - alpha*edn2.y,
      en1: en1,
      en2: en2
    };
  }

  var cps = []
  for(var i = 0; i < n.length - 1; i++) {
    cps.push(getCP(n[i],n[i+1]));
  }


  return cps;
}

// M100,100
ctx.moveTo(100,100)
// a45,35 -30 0,1 50,-25
var rx = 45, ry=35,phi =  -30 * Math.PI / 180, fa = 0, fs = 1, x = 100, y = 100, x1 = x + 50, y1 = y - 25;

  var cps = generateBezierPoints(rx, ry, phi, fa, fs, x, y, x1, y1);

  var limit = 2;

  for(var i = 0; i < limit && i < cps.length; i++) {
    ctx.bezierCurveTo(cps[i].cpx1, cps[i].cpy1,
                      cps[i].cpx2, cps[i].cpy2,
                      i < limit - 1 ? cps[i].en2.x : x1, i < limit - 1 ? cps[i].en2.y : y1);
  }
ctx.stroke()

      

+1


source







All Articles