R - modern visNetwork vs networkd3 performance in Shiny app (2017)

I want to swap vertices on a "large" graph (less than 500 nodes) according to their centrality and allow the user to remove an edge or vertex on click events. When a vertex or edge is removed, the graph recalculates a new centering score, and the colors of the edges and vertices are displayed again.

I was looking at visNetwork and networkD3 R. This blog post in 2015 mentions that visNetwork works best on network D3, but I read a couple of SO questions that mention how NetworkD3 has changed and expanded its functionality.

Which of these two packages would be easier to satisfy my requirements?

+3


source to share


1 answer


You know, I need to know this myself for a project I'm starting, and the only way to find out is to try it.

So, I wrote an application.

library(shiny)
library(ggplot2)
library(visNetwork)
library(networkD3)
library(RColorBrewer)
set.seed(123)

u <- shinyUI(fluidPage(
  titlePanel("Network Library Comparison"),

  sidebarLayout(position = "left",
    sidebarPanel( h2("Parameters"),
      selectInput("mode","Network:",c("MisNodes","Random","Circular"),"Random"),
      numericInput("nnodes","Nodes:",10,1,10000,1),
      sliderInput("edgefak","Edge Factor:",0,10,2,step=0.1),
      numericInput("ngroups","Groups:",5,1,11,1),
      actionButton("gennet","Generate"),
      textOutput("networkstat")
    ),
  mainPanel(h2("Network Plots"),
    tabsetPanel(
      tabPanel("networkD3", forceNetworkOutput("networkD3",,height="500px"),
                                           style = "background-color: #eeeeee;"),
      tabPanel("visNetwork",visNetworkOutput("visnetwork",height="500px"),
                                            style = "background-color: #eeeeee;")
    )
   )
  )
))

#MisLinks and MisNodes are a standard example from networkD3
data(MisLinks)
data(MisNodes)
fmtarrstr <- function(arr){
  # first add ' surrounding every element
  qarr <- sprintf("'%s'",as.character(arr))
  # now concactinate them together seperated with ,
  paste(qarr,collapse=",")
}
clrpal <- brewer.pal(n=11,name="Spectral")
clrscale <- sprintf('d3.scaleOrdinal() .domain([%s]) .range([%s]);',
                                       fmtarrstr(1:11),fmtarrstr(clrpal))


s <- shinyServer(function(input, output){


  net <- reactiveValues(nodes=NULL,edges=NULL,groups=NULL)

  observeEvent(input$gennet,{
    print("regenerating network")
    mode <- input$mode
    nn <- input$nnodes
    ng <- input$ngroups
    edgefak <- input$edgefak
    if(mode=="MisNodes"){
      nodes <- data.frame(id = 0:(nrow(MisNodes)-1),
                          label=MisNodes$name,
                          title=MisNodes$name,
                          group=MisNodes$group,
                          color=clrpal[MisNodes$group+1],
                          size=MisNodes$size)
      edges <- data.frame(from = MisLinks$source, to = MisLinks$target)
      net$groups <- data.frame(id=1:11,colors<-clrpal[1:11])
    } else if(mode=="Random"){
      nodes <- data.frame(id = 0:(nn-1),
                          label=0:(nn-1),
                          title=0:(nn-1),
                          group=sample(0:(ng-1),nn,replace=T),
                          size=10)
      nodes$color <- clrpal[nodes$group+1]
      nedge <- trunc(nn*edgefak)
      frvek <- sample(0:(nn-1),nedge,replace=T)
      tovek <- sample(0:(nn-1),nedge,replace=T)
      edges <- data.frame(from = frvek, to = tovek)
      net$groups <- data.frame(id=1:ng,colors<-clrpal[1:ng])
    } else if(mode=="Circular"){

      nodes <- data.frame(id = 0:(nn-1),
                          label=0:(nn-1),
                          title=0:(nn-1),
                          group=sample(0:(ng-1),nn,replace=T),
                         size=10)
      nodes$color <- clrpal[nodes$group+1]
      nedge <- nn
      frvek <- 0:(nn-1)
      tovek <- c(1:(nn-1),0)
      edges <- data.frame(from = frvek, to = tovek)
      net$groups <- data.frame(id=1:ng,colors<-clrpal[1:ng])
    }
    net$nodes <- nodes
    net$edges <- edges
    net$groups <- data.frame(id=1:ng,colors<-clrpal[1:ng])
  })
  output$visnetwork <- renderVisNetwork({ 
    req(net$edges)
    netout <- visNetwork(net$nodes,net$edges) 
    netout
  })
  output$networkD3 <- renderForceNetwork({ 
    req(net$edges)
    netout <- forceNetwork(
      Links  = net$edges, Nodes   = net$nodes,
      Source = "from", Target  = "to",
      NodeID  = "label", Nodesize="size",
      Group="group",opacity=1.0, zoom=T, fontSize = 12,
      colourScale = JS(clrscale)) 
    netout
  })
  output$networkstat <- renderText({
    sprintf("\nNodes:%d  Edges:%d Groups:%d",
              nrow(net$nodes),nrow(net$edges),nrow(net$groups))
  })
})
shinyApp(u,s)

      

Looks like:



enter image description here

In conclusion I would say they both have pros and cons, overall I think it is visNetwork

easier to use and looks cooler with these spline curves, but networkD3

certainly much faster when initializing for large networks. visNetwork

becomes painful during initialization as early as 200 nodes, although it is great for drawing.

Notes:

  • Mouse networkD3

    zoom only works in real browser (I used Chrome). I couldn't get it to work in the R-Studio browser. Drove me crazy.
  • In this case, everything was noticeably faster in Chrome than in the R-Studio browser. Do your benchmarking and real work in a real browser.
+8


source







All Articles