Pandas slice row with index from another column
I want to trim this row using indices from another column. I am getting NaN instead of string fragments.
import pandas as pd
from pandas import DataFrame, Series
sales = {'name': ['MSFTCA', 'GTX', 'MSFTUSA', ],
'n_chars': [2, 2, 3],
'Jan': [150, 200, 50],
'Feb': [200, 210, 90],
'Mar': [140, 215, 95]}
df = pd.DataFrame.from_dict(sales)
df
def extract_location(name, n_chars):
return( name.str[-n_chars:])
df.assign(location=(lambda x: extract_location(x['name'], x['n_chars']))).to_dict()
gives:
{'Feb': {0: 200, 1: 210, 2: 90},
'Jan': {0: 150, 1: 200, 2: 50},
'Mar': {0: 140, 1: 215, 2: 95},
'location': {0: nan, 1: nan, 2: nan},
'n_chars': {0: 2, 1: 2, 2: 3},
'name': {0: 'MSFTCA', 1: 'GTX', 2: 'MSFTUSA'}}
+3
source to share
2 answers
You need apply
c axis=1
to process line by line:
def extract_location(name, n_chars):
return( name[-n_chars:])
df=df.assign(location=df.apply(lambda x: extract_location(x['name'], x['n_chars']), axis=1))
print (df)
Feb Jan Mar n_chars name location
0 200 150 140 2 MSFTCA CA
1 210 200 215 2 GTX TX
2 90 50 95 3 MSFTUSA USA
df = df.assign(location=df.apply(lambda x: x['name'][-x['n_chars']:], axis=1))
print (df)
Feb Jan Mar n_chars name location
0 200 150 140 2 MSFTCA CA
1 210 200 215 2 GTX TX
2 90 50 95 3 MSFTUSA USA
+3
source to share
Using understanding
df.assign(location=[name[-n:] for n, name in zip(df.n_chars, df.name)])
Feb Jan Mar n_chars name location
0 200 150 140 2 MSFTCA CA
1 210 200 215 2 GTX TX
2 90 50 95 3 MSFTUSA USA
You can speed it up a bit with
df.assign(location=[name[-n:] for n, name in zip(df.n_chars.values, df.name.values)])
+3
source to share