Python: dump all unique combinations with constraint, in Pandas DataFrame

You will have to forgive me as I am currently learning Python. I have Pandas

DataFrame

with the following work attribute columns: Name, Position, HourlyPay.

DF

Index   Name     Position      HourlyPay
  0     John     Analyst         15.00
  1     Mike     Programmer      18.00
  2     Lisa     Supervisor      16.75
  4     Frank    Analyst         15.50

      

I want to output to another DataFrame

(as shown below) with all possible unique combinations of the n

person command , which will also include their positions as column headers and another column that summarizes them HourlyPay

and then sorts them highest TotalHourlyPay

.

uniqueDf

Index   Analyst  Programmer  Supervisor  TotalHourlyPay
 0       Frank      Mike       Lisa          50.25
 1       John       Mike       Lisa          49.75

      

I used 3 positions for my example uniqueDf

above, but this can change at times. For example, 2 positions Analyst

can run at the same time, so I want to be able to dynamically add or remove multiple position columns whenever I need to. A second example is shown below.

secondExampleDf

Index   Analyst  Analyst Programmer  Supervisor  TotalHourlyPay
 0       Frank    John      Mike       Lisa          65.25

      

This is a very simple example of a much larger dataset. I tried this problem but my code is not worth showing. The closest I used is itertools.combinations

in the column df.Name

. I tried to add and sum a column TotalHourlyPay

using join

or merge

between two DataFrame

s, but I couldn't get that to work either.

possibleCombinations = list(itertools.combinations(df.Name, 3))
uniqueDf = pd.DataFrame(possibleCombinations,columns=['Employee1','Employee2','Employee3'])

      

I'm just asking if anyone can help me in the right direction. I know SO is not about writing code for you, which I definitely don't want. I'm just confused as to what to do next, every link in Google Chrome gets highlighted on click. Any help is appreciated.

thank

+3


source to share


2 answers


This code gives the desired output:



import pandas as pd
import itertools

# definition of dataframe
df = pd.DataFrame()
df["Index"] = [0, 1, 2, 4, 5, 6, 8, 9, 10]
df["Name"] = ["John", "Mike", "Lisa", "Franck", "Peter", "Suzanne", "Laura", "Sam", "Manon"]
df["Position"] = ["Analyst", "Programmer", "Supervisor", "Analyst", "Programmer", "Programmer", "Supervisor", "Analyst", "Analyst"]
df["HourlyPay"] = [15.00, 18.00, 16.75, 15.50, 17.00, 18.00, 16.00, 12.00, 13.00]

# dict of dataframes by position
unique_positions = list(df["Position"].unique())
pos_dfs = {}
for pos in unique_positions:
    pos_dfs[pos] = df.loc[df["Position"]==pos].reset_index()

# required positions with count
req_pos_count = pd.DataFrame.from_dict({"count":{"Analyst": 2, "Supervisor": 1, "Programmer": 1}})
req_pos_unique = list(req_pos_count.index.unique())
req_pos_dfs = [pos_dfs[pos] for pos in req_pos_unique]

which_pos = [item for _, row in req_pos_count.iterrows() for item in [row.name]*row["count"]]
which_pos_count = [str(i) + "_" + pos for i, pos in enumerate(which_pos)]

# combinations
pos_dfs_rows = [list(itertools.combinations(range(len(pos_df)), req_pos_count.loc[req_pos_unique[i]]["count"]))
                for i, pos_df in enumerate(req_pos_dfs)]
pos_dfs_rows_comb = [[it for item in sublist for it in item]
                     for sublist in list(itertools.product(*pos_dfs_rows)) ]

# building of result
uniqueDf = pd.DataFrame(index=range(len(pos_dfs_rows_comb)), columns=which_pos_count+["TotalHourlyPay"])
for k, comb in enumerate(pos_dfs_rows_comb):
    rows = [pos_dfs[which_pos[i]].ix[ind] for i, ind in enumerate(comb)]
    tp = pd.concat(rows, axis=1, ignore_index=True).transpose()
    uniqueDf.loc[k, which_pos_count] = list(tp["Name"])
    uniqueDf["TotalHourlyPay"].loc[k] = tp["HourlyPay"].sum()
uniqueDf.sort_values(by="TotalHourlyPay", inplace=True)

      

+1


source


In this process, I followed.

First get the indicator variables for held or missing positions:

position = pd.get_dummies(df['Position']).astype(bool)
not_position = ~pd.get_dummies(df['Position'], prefix='not').astype(bool)
df1 = pd.concat([df, position, not_position], axis=1)

      

Then create possible combinations:



df2 = df1.merge(df1, left_on='Programmer', right_on='not_Programmer', suffixes=['', '_y'])
df3 = df2.merge(df1, left_on='Supervisor', right_on='not_Supervisor', suffixes=['', '_z'])

      

Then remove the duplicates and extract the fields that are still valid

df4 = df3[(df3['Analyst']) & (df3['Programmer_y']) & (df3['Supervisor_z'])]
df4.loc[:, ['Name', 'Name_y', 'Name_z', 'HourlyPay', 'HourlyPay_y', 'HourlyPay_z']]
    Name Name_y Name_z  HourlyPay  HourlyPay_y  HourlyPay_z
0   John   Mike   Lisa       15.0         18.0        16.75
1  Frank   Mike   Lisa       15.5         18.0        16.75

      

After that, you can take the amount across all rows, delete the new useless payment columns, and rename the remaining columns to return a result, such as your unique Df.

0


source







All Articles