Find minimum number of sheets in multiple sheets with pandas

How to find the minimum values ​​for multiple sheets for each index on a shared sheet

suppose

  worksheet 1

    index    A   B   C
       0     2   3   4.28
       1     3   4   5.23
    worksheet 2

    index    A   B   C
        0    9   6   5.9
        1    1   3   4.1

    worksheet 3

    index    A   B   C
        0    9   6   6.0
        1    1   3   4.3
 ...................(Worksheet 4,Worksheet 5)...........
by comparing C column, I want an answer, where dataframe looks like

index      min(c)
    0       4.28
    1       4.1

      

+3


source to share


2 answers


from functools import reduce

reduce(np.fmin, [ws1.C, ws2.C, ws3.C])

index
0    4.28
1    4.10
Name: C, dtype: float64

      


It generalizes well with understanding

reduce(np.fmin, [w.C for w in [ws1, ws2, ws3, ws4, ws5]])

      


If you must insist on the name of your column

from functools import reduce

reduce(np.fmin, [ws1.C, ws2.C, ws3.C]).to_frame('min(C)')

       min(C)
index        
0        4.28
1        4.10

      




You can also use pd.concat

in dictionary and use pd.Series.min

with parameterlevel=1

pd.concat(dict(enumerate([w.C for w in [ws1, ws2, ws3]]))).min(level=1)
# equivalently
# pd.concat(dict(enumerate([w.C for w in [ws1, ws2, ws3]])), axis=1).min(1)

index
0    4.28
1    4.10
Name: C, dtype: float64

      

Note:

dict(enumerate([w.C for w in [ws1, ws2, ws3]]))

      

is another way to say

{0: ws1.C, 1: ws2.C, 2: ws3.C}

      

+3


source


You need read_excel

with a parameter sheetname=None

for OrderedDict

from all the sheets , and then enumerate the comprehension reduce

using numpy.fmin

:

dfs = pd.read_excel('file.xlsx', sheetname=None)
print (dfs)
OrderedDict([('Sheet1',    A  B     C
0  2  3  4.28
1  3  4  5.23), ('Sheet2',    A  B    C
0  9  6  5.9
1  1  3  4.1), ('Sheet3',    A  B    C
0  9  6  6.0
1  1  3  4.3)])

from functools import reduce

df = reduce(np.fmin, [v['C'] for k,v in dfs.items()])
print (df)
0    4.28
1    4.10
Name: C, dtype: float64

      

Solution with concat

:

df = pd.concat([v['C'] for k,v in dfs.items()],axis=1).min(axis=1)
print (df)
0    4.28
1    4.10
dtype: float64

      




If you need to define an index in read_excel

:

dfs = pd.read_excel('file.xlsx', sheetname=None, index_col='index')
print (dfs)
OrderedDict([('Sheet1',        A  B     C
index            
0      2  3  4.28
1      3  4  5.23), ('Sheet2',        A  B    C
index           
0      9  6  5.9
1      1  3  4.1), ('Sheet3',        A  B    C
index           
0      9  6  6.0
1      1  3  4.3)])


df = pd.concat([v['C'] for k,v in dfs.items()], axis=1).min(axis=1)
print (df)
index
0    4.28
1    4.10
dtype: float64

      

+3


source







All Articles