Strange behavior when trying to add a row to each group in a group by object

This question is about a function that behaves unpredictably when applied on two different data frames - more specifically, groupby objects. Either I am missing something that is clearly wrong, or there is a bug in pandas.


I wrote the following function to add a line to each group in a groupby object. This question is another question related to this feature.

def myfunction(g, now):

    '''This function appends a row to each group and populates the DTM column value of that row with the current timestamp. Other columns of the new row will have NaN s.
       g: a groupby object
       now: current timestamp

       returns a dataframe that has the current timestamp appended in the DTM column for each group

    '''
        g.loc[g.shape[0], 'DTM'] = now # Appending the current timestamp to a DTM column in each group

        return g

      


We'll run two tests to test the function.


TEST 1

It works as expected in the dataframe a

in the linked question (demonstrated in the above question). Here's a slightly increased rerun for clarity (mostly copied from the linked question).

arrays = [['bar', 'bar','bar', 'baz', 'baz', 'foo', 'foo', 'foo', 'qux', 'qux'],
             ['one', 'one','two', 'one', 'two', 'one', 'two', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
a = pd.DataFrame(np.random.random((10,)), index = index)


    a
Out[50]: 
                     0
first second          
bar   one     0.134379
      one     0.967928
      two     0.067502
baz   one     0.182887
      two     0.926932
foo   one     0.806225
      two     0.718322
      two     0.932114
qux   one     0.772494
      two     0.141510

      

By applying this function,

 a = a.reset_index().groupby(['first', 'second']).apply(lambda x: myfunction(x, now))

      

It adds a new line to each group. Added a new column DTM

as it was not in the original a

. The group is a pair first

- second

.

a
Out[52]: 
               first second         0                     DTM
first second                                                 
bar   one    0   bar    one  0.134379                     NaT
             1   bar    one  0.967928                     NaT
             2   NaN    NaN       NaN 2017-07-03 18:56:33.183
      two    2   bar    two  0.067502                     NaT
             1   NaN    NaN       NaN 2017-07-03 18:56:33.183
baz   one    3   baz    one  0.182887                     NaT
             1   NaN    NaN       NaN 2017-07-03 18:56:33.183
      two    4   baz    two  0.926932                     NaT
             1   NaN    NaN       NaN 2017-07-03 18:56:33.183
foo   one    5   foo    one  0.806225                     NaT
             1   NaN    NaN       NaN 2017-07-03 18:56:33.183
      two    6   foo    two  0.718322                     NaT
             7   foo    two  0.932114                     NaT
             2   NaN    NaN       NaN 2017-07-03 18:56:33.183
qux   one    8   qux    one  0.772494                     NaT
             1   NaN    NaN       NaN 2017-07-03 18:56:33.183
      two    9   qux    two  0.141510                     NaT
             1   NaN    NaN       NaN 2017-07-03 18:56:33.183

      

Some clarifications,

a = a.reset_index(level = 2).drop(('level_2', 'first', 'second')).loc[:,(0,'DTM')]

      

this gives the final a

as,

a
Out[62]: 
                     0                     DTM
first second                                  
bar   one     0.371683                     NaT
      one     0.327870                     NaT
      one          NaN 2017-07-03 18:56:33.183
      two     0.048794                     NaT
      two          NaN 2017-07-03 18:56:33.183
baz   one     0.462747                     NaT
      one          NaN 2017-07-03 18:56:33.183
      two     0.758674                     NaT
      two          NaN 2017-07-03 18:56:33.183
foo   one     0.238607                     NaT
      one          NaN 2017-07-03 18:56:33.183
      two     0.156104                     NaT
      two     0.594270                     NaT
      two          NaN 2017-07-03 18:56:33.183
qux   one     0.091088                     NaT
      one          NaN 2017-07-03 18:56:33.183
      two     0.795864                     NaT
      two          NaN 2017-07-03 18:56:33.183

      

So far so good. This is expected behavior. A new row was added to each pair of first

- second

, and the column of DTM

that row was filled with the current timestamp.


TEST 2

Surprisingly, I was unable to reproduce this behavior in the dataframe below df

. A group is a combination ID

-SEQ


This one df

can be reproduced using:

1. Copy below

    C1  572  5/9/2017 10:13  PE
    C1  572  5/9/2017 12:24  OK
    C1  579  5/9/2017 10:19  PE
    C1  579  5/9/2017 13:25  OK
    C1  587  5/9/2017 10:20  PE
    C1  587  5/9/2017 12:25  OK
    C1  590  5/9/2017 10:21  PE
    C1  590  5/9/2017 13:09  OK
    C1  604  5/9/2017 10:38  PE
    C1  604  5/9/2017 12:32  OK
    C1  609  5/9/2017 10:39  PE
    C1  609  5/9/2017 13:29  OK
    C1  613  5/9/2017 10:39  PE
    C1  613  5/9/2017 13:08  OK
    C1  618  5/9/2017 10:40  PE
    C1  618  5/9/2017 13:33  OK
    C1  636  5/9/2017 10:54  PE
    C1  636  5/9/2017 13:36  OK
    C1  642  5/9/2017 10:55  PE
    C1  642  5/9/2017 13:35  OK
    C1  643  5/9/2017 10:56  PE
    C1  643  5/9/2017 13:34  OK
    C1  656  5/9/2017 10:55  PE
    C1  656  5/9/2017 13:36  OK
    C2  86  9/5/2016 19:45   PE
    C2  86  9/6/2016 11:55   OK
    C3  10  4/17/2017 12:23  PE
    C3  10  4/17/2017 14:51  OK
    C4  38  3/25/2017 10:35  PE
    C4  38  3/25/2017 10:51  OK

      

2. And then after completing them,

  df = pd.read_clipboard(sep = '[ ]{2,}')
  df.columns = ['ID', 'SEQ', 'DTM', 'STATUS']

      


Setting up a multi-index

d = df.set_index(['ID', 'SEQ', 'DTM']) # I have three index levels this time in the original dataframe

      

What looks d

,

d
Out[40]: 
                       STATUS
ID SEQ DTM                   
C1 572 5/9/2017 10:13      PE
       5/9/2017 12:24      OK
   579 5/9/2017 10:19      PE
       5/9/2017 13:25      OK
   587 5/9/2017 10:20      PE
       5/9/2017 12:25      OK
   590 5/9/2017 10:21      PE
       5/9/2017 13:09      OK
   604 5/9/2017 10:38      PE
       5/9/2017 12:32      OK
   609 5/9/2017 10:39      PE
       5/9/2017 13:29      OK
   613 5/9/2017 10:39      PE
       5/9/2017 13:08      OK
   618 5/9/2017 10:40      PE
       5/9/2017 13:33      OK
   636 5/9/2017 10:54      PE
       5/9/2017 13:36      OK
   642 5/9/2017 10:55      PE
       5/9/2017 13:35      OK
   643 5/9/2017 10:56      PE
       5/9/2017 13:34      OK
   656 5/9/2017 10:55      PE
       5/9/2017 13:36      OK
C2 86  9/5/2016 19:45      PE
       9/6/2016 11:55      OK
C3 10  4/17/2017 12:23     PE
       4/17/2017 14:51     OK
C4 38  3/25/2017 10:35     PE
       3/25/2017 10:51     OK

      

By applying this function,

dd = d.reset_index().groupby(['ID', 'SEQ']).apply(lambda x: myfunction(x, now)) # a group is a unique combination of ID-SEQ pairs

      

This returns, (note the fourth line)

dd
Out[37]: 
            ID    SEQ                         DTM STATUS
ID SEQ                                                  
C1 572 0    C1  572.0              5/9/2017 10:13     PE
       1    C1  572.0              5/9/2017 12:24     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   579 2    C1  579.0  2017-07-03 18:56:33.183000     PE
       3    C1  579.0              5/9/2017 13:25     OK
   587 4    C1  587.0              5/9/2017 10:20     PE
       5    C1  587.0              5/9/2017 12:25     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   590 6    C1  590.0              5/9/2017 10:21     PE
       7    C1  590.0              5/9/2017 13:09     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   604 8    C1  604.0              5/9/2017 10:38     PE
       9    C1  604.0              5/9/2017 12:32     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   609 10   C1  609.0              5/9/2017 10:39     PE
       11   C1  609.0              5/9/2017 13:29     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   613 12   C1  613.0              5/9/2017 10:39     PE
       13   C1  613.0              5/9/2017 13:08     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   618 14   C1  618.0              5/9/2017 10:40     PE
       15   C1  618.0              5/9/2017 13:33     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   636 16   C1  636.0              5/9/2017 10:54     PE
       17   C1  636.0              5/9/2017 13:36     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   642 18   C1  642.0              5/9/2017 10:55     PE
       19   C1  642.0              5/9/2017 13:35     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   643 20   C1  643.0              5/9/2017 10:56     PE
       21   C1  643.0              5/9/2017 13:34     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
   656 22   C1  656.0              5/9/2017 10:55     PE
       23   C1  656.0              5/9/2017 13:36     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
C2 86  24   C2   86.0              9/5/2016 19:45     PE
       25   C2   86.0              9/6/2016 11:55     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
C3 10  26   C3   10.0             4/17/2017 12:23     PE
       27   C3   10.0             4/17/2017 14:51     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN
C4 38  28   C4   38.0             3/25/2017 10:35     PE
       29   C4   38.0             3/25/2017 10:51     OK
       2   NaN    NaN  2017-07-03 18:56:33.183000    NaN

      

some clarification,

ddd = dd.reset_index(level = 2).drop(('level_2', 'ID', 'SEQ')).loc[:,('DTM','STATUS')]

ddd
Out[39]: 
                               DTM STATUS
ID SEQ                                   
C1 572              5/9/2017 10:13     PE
   572              5/9/2017 12:24     OK
   572  2017-07-03 18:56:33.183000    NaN
   579  2017-07-03 18:56:33.183000     PE
   579              5/9/2017 13:25     OK
   587              5/9/2017 10:20     PE
   587              5/9/2017 12:25     OK
   587  2017-07-03 18:56:33.183000    NaN
   590              5/9/2017 10:21     PE
   590              5/9/2017 13:09     OK
   590  2017-07-03 18:56:33.183000    NaN
   604              5/9/2017 10:38     PE
   604              5/9/2017 12:32     OK
   604  2017-07-03 18:56:33.183000    NaN
   609              5/9/2017 10:39     PE
   609              5/9/2017 13:29     OK
   609  2017-07-03 18:56:33.183000    NaN
   613              5/9/2017 10:39     PE
   613              5/9/2017 13:08     OK
   613  2017-07-03 18:56:33.183000    NaN
   618              5/9/2017 10:40     PE
   618              5/9/2017 13:33     OK
   618  2017-07-03 18:56:33.183000    NaN
   636              5/9/2017 10:54     PE
   636              5/9/2017 13:36     OK
   636  2017-07-03 18:56:33.183000    NaN
   642              5/9/2017 10:55     PE
   642              5/9/2017 13:35     OK
   642  2017-07-03 18:56:33.183000    NaN
   643              5/9/2017 10:56     PE
   643              5/9/2017 13:34     OK
   643  2017-07-03 18:56:33.183000    NaN
   656              5/9/2017 10:55     PE
   656              5/9/2017 13:36     OK
   656  2017-07-03 18:56:33.183000    NaN
C2 86               9/5/2016 19:45     PE
   86               9/6/2016 11:55     OK
   86   2017-07-03 18:56:33.183000    NaN
C3 10              4/17/2017 12:23     PE
   10              4/17/2017 14:51     OK
   10   2017-07-03 18:56:33.183000    NaN
C4 38              3/25/2017 10:35     PE
   38              3/25/2017 10:51     OK
   38   2017-07-03 18:56:33.183000    NaN

      

Problem

In each group ID

- SEQ

adds a new string that contains the current timestamp, except for the group C1

- 579

! (4th line in dd

and ddd

)


Questions

  • What is the cause of this problem?
  • What is the additional index level introduced in dd

    ?
+3


source to share


1 answer


After a big debug issue was found.

There is a problem with the same number at the level 3

- in the last example it is a group form 2

, but this value existed before, so no new line was added, the onlu line was overwritten.

            ID    SEQ                        DTM STATUS
ID SEQ                                                 
C1 572 0    C1  572.0 2017-05-09 10:13:00.000000     PE
       1    C1  572.0 2017-05-09 12:24:00.000000     OK
       2   NaN    NaN 2017-07-06 08:46:02.341472    NaN
   579 2    C1  579.0 2017-07-06 08:46:02.341472     PE <- ovetwritten values in row
       3    C1  579.0 2017-05-09 13:25:00.000000     OK
   587 4    C1  587.0 2017-05-09 10:20:00.000000     PE
       5    C1  587.0 2017-05-09 12:25:00.000000     OK
       2   NaN    NaN 2017-07-06 08:46:02.341472    NaN

      

The first sample was nice because the second group only has one line.

But if it has 2 lines:



arrays = [['bar', 'bar','bar', 'baz', 'baz', 'foo', 'foo', 'foo', 'qux', 'qux'],
             ['one', 'two','two', 'one', 'two', 'one', 'two', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
a = pd.DataFrame(np.random.random((10,)), index = index)
print (a)
                     0
first second          
bar   one     0.366258
      two     0.583205
      two     0.159388
baz   one     0.598198
      two     0.274027
foo   one     0.086461
      two     0.353577
      two     0.823377
qux   one     0.098737
      two     0.128470

      

same problem.

print (a)
               first second         0                        DTM
first second                                                    
bar   one    0   bar    one  0.366258                        NaT
             1   NaN    NaN       NaN 2017-07-06 08:47:55.610671
      two    1   bar    two  0.583205                        NaT
             2   bar    two  0.159388 2017-07-06 08:47:55.610671 <- ovetwritten 
baz   one    3   baz    one  0.598198                        NaT
             1   NaN    NaN       NaN 2017-07-06 08:47:55.610671
      two    4   baz    two  0.274027                        NaT

      

So, if the function is slightly modified, everything works fine:

now = pd.datetime.now()

def myfunction(g, now):

    g.loc[str(g.shape[0]) + 'a', 'DTM'] = now 
    return g

arrays = [['bar', 'bar','bar', 'baz', 'baz', 'foo', 'foo', 'foo', 'qux', 'qux'],
             ['one', 'two','two', 'one', 'two', 'one', 'two', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
a = pd.DataFrame(np.random.random((10,)), index = index)
print (a)


a = a.reset_index().groupby(['first', 'second']).apply(lambda x: myfunction(x, now))
print (a)
                first second         0                        DTM
first second                                                     
bar   one    0    bar    one  0.677641                        NaT
             1a   NaN    NaN       NaN 2017-07-06 08:54:47.481671
      two    1    bar    two  0.274588                        NaT
             2    bar    two  0.524903                        NaT
             2a   NaN    NaN       NaN 2017-07-06 08:54:47.481671
baz   one    3    baz    one  0.198272                        NaT
             1a   NaN    NaN       NaN 2017-07-06 08:54:47.481671
      two    4    baz    two  0.787949                        NaT
             1a   NaN    NaN       NaN 2017-07-06 08:54:47.481671
foo   one    5    foo    one  0.484197                        NaT
             1a   NaN    NaN       NaN 2017-07-06 08:54:47.481671

      

+2


source







All Articles