Encoding Gaussian Logarithmic Probability in R
I am trying to learn R by coding gaussian log likelihood to solve with help optim()
, but after hours of sweat, I am still not familiar. (This is self-study, not homework.)
I follow the agreement in many user-defined functions, which write function of the type loglik <- function(theta, y, x)
, where theta
- is a vector of weights beta
and dispersion sigma
, y
- and the result x
is the data.
My complete code with simulated data is shown below. By running it, you can see my function is out of label compared to lm()
. Can anyone give me an idea of ββwhere I am going wrong?
# random data
set.seed(111)
y = sample(1:100,100)
x1 = sample(1:100,100)*rnorm(1,0)
x2 = sample(x1)*rnorm(1,0)
x3 = sample(x2)*rnorm(1,0)
dat = data.frame(x1,x2,x3)
# define gaussian log-likelihood
logLik <- function(theta, Y, X){
X <- as.matrix(X) # convert data to matrix
k <- ncol(X) # get the number of columns (independent vars)
beta <- theta[1:k] # vector of weights intialized with starting values
expected_y <- X %*% beta # X is dimension (n x k) and beta is dimension (k x 1)
sigma2 <- theta[k+1] # should be pulled from the last of the starting values vector
LL <- sum(dnorm(Y, mean = expected_y, sd = sigma2, log = T)) # sum of the PDF over each observation
return(-LL)
}
Here's the result:
> optim(logLik, par=starting_values, method="Nelder-Mead", Y=y, X=dat, hessian = T)$par
[1] 0.4832514 -0.2276684 -0.3860800 32.7168490 -38.9030319
> coefficients(lm(y~x1+x2+x3))
(Intercept) x1 x2 x3
58.17347451 -0.06587320 0.13001865 -0.03624233
source to share
The basics of your approach sound, but some of the details are wrong. First, it makes sense to plot the data using a Gaussian linear model; eg
set.seed(111)
X <- cbind(1, matrix(rnorm(100*3), 100, 3))
y <- X %*% rep(1, 4) + rnorm(100, 0, 2)
starting.values <- c(1, 1, 1, 1, 2) # actual parameters
# define gaussian log-likelihood
logLik <- function(theta, y, X){
k <- ncol(X) # get the number of columns (independent vars)
beta <- theta[1:k] # vector of weights intialized with starting values
expected_y <- X %*% beta # X is dimension (n x k) and beta is dimension (k x 1)
sigma <- theta[k+1] # should be pulled from the last of the starting values vector
LL <- sum(dnorm(y, mean = expected_y, sd = sigma, log = TRUE)) # sum of the PDF over each observation
return(-LL)
}
By the way, functions are *norm()
parameterized in terms of SD, not variance.
Then
> optim(logLik, par=starting.values, y=y, X=X, method="BFGS")$par
[1] 1.0471420 1.1411523 0.8167656 0.9840397 1.8910201
Warning message:
In dnorm(y, mean = expected_y, sd = sigma, log = TRUE) : NaNs produced
> summary(lm(y ~ X - 1))
Call:
lm(formula = y ~ X - 1)
Residuals:
Min 1Q Median 3Q Max
-4.5062 -1.3293 0.1371 1.2057 5.8116
Coefficients:
Estimate Std. Error t value Pr(>|t|)
X1 1.0471 0.1952 5.365 5.61e-07 ***
X2 1.1412 0.1818 6.275 1.00e-08 ***
X3 0.8168 0.1907 4.282 4.39e-05 ***
X4 0.9840 0.2122 4.638 1.11e-05 ***
---
Signif. codes: 0 β***β 0.001 β**β 0.01 β*β 0.05 β.β 0.1 β β 1
Residual standard error: 1.93 on 96 degrees of freedom
Multiple R-squared: 0.5333, Adjusted R-squared: 0.5138
F-statistic: 27.42 on 4 and 96 DF, p-value: 3.468e-15
Note that it method="BFGS"
gives a warning but gives the correct answer; method="Nelder-Mead"
slightly less accurate. Also note that the usual SD error estimate differs from the ML estimate.
I hope this helps
source to share