Counting value changes in each column in dataframe in pandas ignoring NaN changes

I am trying to count the number of changes to a value in each column in a dataframe in pandas. The code I'm working fine, except for NaNs: If a column contains two subsequent NaNs, it counts as a value change, which I don't want. How can I avoid this?

I am doing the following (thanks to unutbu answer ):

import pandas as pd
import numpy as np

frame = pd.DataFrame({
    'time':[1234567000 , np.NaN, np.NaN],
    'X1':[96.32,96.01,96.05],
    'X2':[23.88,23.96,23.96]
},columns=['time','X1','X2']) 

print(frame)

changes = (frame.diff(axis=0) != 0).sum(axis=0)
print(changes)

changes = (frame != frame.shift(axis=0)).sum(axis=0)
print(changes)

      

returns:

           time     X1     X2
0  1.234567e+09  96.32  23.88
1           NaN  96.01  23.96
2           NaN  96.05  23.96

time    3
X1      3
X2      2
dtype: int64

time    3
X1      3
X2      2
dtype: int64

      

Instead, the results should be (note the change in the time column):

time    2
X1      3
X2      2
dtype: int64

      

+3


source to share


1 answer


change = (frame.fillna(0).diff() != 0).sum()

      

Output:

time    2
X1      3
X2      2
dtype: int64

      



NaN are "truthful" . Then change NaN to zero.

nan - nan = nan

nan != 0  = True

fillna(0)

0 - 0 = 0

0 != 0 = False

      

+3


source







All Articles