Add additional column as cumulative temporary difference

How do I add an extra column that is the cumulative value of temporary differences for each course? For example, the original table:

 id_A       course     weight                ts_A       value
 id1        cotton     3.5       2017-04-27 01:35:30  150.000000
 id1        cotton     3.5       2017-04-27 01:36:00  416.666667
 id1        cotton     3.5       2017-04-27 01:36:30  700.000000
 id1        cotton     3.5       2017-04-27 01:37:00  950.000000
 id2     cotton blue   5.0       2017-04-27 02:35:30  150.000000
 id2     cotton blue   5.0       2017-04-27 02:36:00  450.000000
 id2     cotton blue   5.0       2017-04-27 02:36:30  520.666667
 id2     cotton blue   5.0       2017-04-27 02:37:00  610.000000

      

Expected Result:

 id_A       course     weight                ts_A       value      cum_delta_sec
 id1        cotton     3.5       2017-04-27 01:35:30  150.000000      0
 id1        cotton     3.5       2017-04-27 01:36:00  416.666667      30 
 id1        cotton     3.5       2017-04-27 01:36:30  700.000000      60
 id1        cotton     3.5       2017-04-27 01:37:00  950.000000      90
 id2     cotton blue   5.0       2017-04-27 02:35:30  150.000000      0
 id2     cotton blue   5.0       2017-04-27 02:36:00  450.000000      30
 id2     cotton blue   5.0       2017-04-27 02:36:30  520.666667      60
 id2     cotton blue   5.0       2017-04-27 02:37:00  610.000000      90

      

+3


source to share


3 answers


You can bind the method diff

with cumsum

:

# convert ts_A to datetime type
df.ts_A = pd.to_datetime(df.ts_A)

# convert ts_A to seconds, group by id and then use transform to calculate the cumulative difference
df['cum_delta_sec'] = df.ts_A.astype(int).div(10**9).groupby(df.id_A).transform(lambda x: x.diff().fillna(0).cumsum())
df

      



enter image description here

+3


source


Use groupby

, transform

and .iloc

:

df['ts_A'] = pd.to_datetime(df.ts_A)
df['cum_delta_sec'] = (df.groupby('id_A')['ts_A']
                         .transform(lambda x: (x - x.iloc[0]).dt.total_seconds()))

      

Output:



  id_A       course  weight                ts_A       value  cum_delta_sec
0  id1       cotton     3.5 2017-04-27 01:35:30  150.000000              0
1  id1       cotton     3.5 2017-04-27 01:36:00  416.666667             30
2  id1       cotton     3.5 2017-04-27 01:36:30  700.000000             60
3  id1       cotton     3.5 2017-04-27 01:37:00  950.000000             90
4  id2  cotton blue     5.0 2017-04-27 02:35:30  150.000000              0
5  id2  cotton blue     5.0 2017-04-27 02:36:00  450.000000             30
6  id2  cotton blue     5.0 2017-04-27 02:36:30  520.666667             60
7  id2  cotton blue     5.0 2017-04-27 02:37:00  610.000000             90

      

In the group, subtract the current value from the first value and use an .dt

accessor to convert to seconds.

+2


source


import csv
import datetime as dt

with open('path/to/input') as fin, open('path/to/output', 'w') as fout:
    infile = csv.DictReader(fin, delimiter='\t')
    outfile = csv.DictWriter(fout, delimiter='\t', fieldnames=infile.fieldnames + ['cum_delta_sec'])

    cdt = 0
    last = None
    for row in infile:
        if last is None:
            last = dt.strptime(row['ts_A'], "%Y-%m-%d %H:%M:%S")
            row['cum_delta_sec'] = 0
            outfile.writerow(row)
            continue

        cdt += (last - dt.strptime(row['ts_A'], "%Y-%m-%d %H:%M:%S")).total_seconds()
        row['cum_delta_sec'] = cdt
        outfile.writerow(row)

      

0


source







All Articles