Using large integers with gmp and machine constraints
I wonder if it is possible to use integers larger than the .Machine$double.xmax
( ~1.79e308
) value in R. I thought that using, for example, Rmpfr
or gmp
in R, you can assign values of any size, up to your system's RAM limit? I thought it was more than .Machine$double.xmax
, but it is clearly not.
> require( gmp )
> as.bigz( .Machine$double.xmax )
Big Integer ('bigz') :
[1] 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368
> as.bigz( 1e309 )
Big Integer ('bigz') :
[1] NA
>
Is it possible for someone to explain why a computer using 64-bit memory addressing cannot store values greater than 1.79e308? Sorry - I don't have a Computer Science background, but I'm trying to study.
Thank.
source to share
Rmpfr can convert a string using mpfr_set_str ...
val <- mpfr("1e309")
## 1 'mpfr' number of precision 17 bits
## [1] 9.999997e308
# set a precision (assume base 10)...
est_prec <- function(e) floor( e/log10(2) ) + 1
val <- mpfr("1e309", est_prec(309) )
## 1 'mpfr' number of precision 1027 bits
## [1]1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
.mpfr2bigz(val)
## Big Integer ('bigz') :
## [1] 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
# extract exponent from a scientific notation string
get_exp <- function( sci ) as.numeric( gsub("^.*e",'', sci) )
# Put it together
sci2bigz <- function( str ) {
.mpfr2bigz( mpfr( str, est_prec( get_exp( str ) ) ) )
}
val <- sci2bigz( paste0( format( Const("pi", 1027) ), "e309") )
identical( val, .mpfr2bigz( Const("pi",1027)*mpfr(10,1027)^309 ) )
## [1] TRUE
## Big Integer ('bigz') :
## [1] 3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587004
As for why, when storing a number greater than .Machine$double.xmax
, the floating point encoding documentation in the IEEE specs, the R and wikipedia FAQ go into all the jargon, but I find it helpful to just define the terms (using ?'.Machine'
) ...
double.xmax
(largest normalized floating point number) = (1 - double.neg.eps) * double.base ^ double.max.exp
where
-
double.neg.eps
(small positive floating point number x such that 1 - x! = 1) =double.base ^ double.neg.ulp.digits
where-
double.neg.ulp.digits
= Maximum negative integer such that1 - double.base ^ i != 1
and
-
-
double.max.exp
= smallest positive force double.base that overflows and -
double.base
(radius for floating point representation) = 2 (for binary).
Thinking about how many finite floating point numbers can be distinguished from another; the IEEE specs tell us that for binary, 11 bits are used for exponent, so we have a maximum exponent 2^(11-1)-1=1023
, but we want the maximum exponent that overflows to double.max.exp
be 1024.
# Maximum number of representations
# double.base ^ double.max.exp
base <- mpfr(2, 2048)
max.exp <- mpfr( 1024, 2048 )
# This is where the big part of the 1.79... comes from
base^max.exp
## 1 'mpfr' number of precision 2048 bits
## [1] 179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216
# Smallest definitive unit.
# Find the largest negative integer...
neg.ulp.digits <- -64; while( ( 1 - 2^neg.ulp.digits ) == 1 )
neg.ulp.digits <<- neg.ulp.digits + 1
neg.ulp.digits
## [1] -53
# It makes a real small number...
neg.eps <- base^neg.ulp.digits
neg.eps
## 1 'mpfr' number of precision 2048 bits
## [1] 1.11022302462515654042363166809082031250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-16
# Largest difinitive floating point number less than 1
# times the number of representations
xmax <- (1-neg.eps) * base^max.exp
xmax
## 1 'mpfr' number of precision 2048 bits
## [1] 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368
identical( asNumeric(xmax), .Machine$double.xmax )
## [1] TRUE
source to share