Convert a 32-bit integer to an array of four 8-bit integers in Python

How can I efficiently convert a 32-bit integer to an array of four 8-bit integers in Python?

I currently have the following code which is very slow:

def convert(int32_val):
    bin = np.binary_repr(int32_val, width = 32) 
    int8_arr = [int(bin[0:8],2), int(bin[8:16],2), 
                int(bin[16:24],2), int(bin[24:32],2)]
    return int8_arr  

      

eg:

print convert(1)
>>> [0, 0, 0, 1]   

print convert(-1)
>>> [255, 255, 255, 255]

print convert(-1306918380)  
>>> [178, 26, 2, 20]

      

I need to achieve the same behavior for 32 bit unsigned integers.

Additionally. Can I vectorize it for a large array with a numeric value of 32 bit integers?

+3


source to share


4 answers


Using dtype

as described in: http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html

Subdivide int16 into 2 int8‘s, called x and y. 0 and 1 are the offsets in bytes:

np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

      

Or adapted to your case:

In [30]: x=np.arange(12,dtype=np.int32)*1000
In [39]: dt=np.dtype((np.int32, {'f0':(np.uint8,0),'f1':(np.uint8,1),'f2':(np.uint8,2), 'f3':(np.uint8,3)}))

In [40]: x1=x.view(dtype=dt)

In [41]: x1['f0']
Out[41]: array([  0, 232, 208, 184, 160, 136, 112,  88,  64,  40,  16, 248], dtype=uint8)

In [42]: x1['f1']
Out[42]: array([ 0,  3,  7, 11, 15, 19, 23, 27, 31, 35, 39, 42], dtype=uint8)

      

compare

In [38]: x%256
Out[38]: array([  0, 232, 208, 184, 160, 136, 112,  88,  64,  40,  16, 248])

      

Additional documentation at http://docs.scipy.org/doc/numpy/user/basics.rec.html



2) Tuple argument: The only relevant case of a tuple that applies to record structures is when the structure is mapped to an existing data type. This is done by pairing, in a tuple, an existing datatype with an appropriate dtype definition (using any of the options described here). As an example (using a definition, using a list, see 3) for more information):

x = np.zeros (3, dtype = ('i4', [('r', 'u1'), ('g', 'u1'), ('b', 'u1'), ('a' , 'and1')]))

array ([0, 0, 0])

x ['r'] # array ([0, 0, 0], dtype = uint8)

This creates an array that looks and acts like a simple int32 array, but also has definitions for fields that only use one int32 byte (a bit like the Fortran equivalent).

One way to get a 2d array of 4 bytes:

In [46]: np.array([x1['f0'],x1['f1'],x1['f2'],x1['f3']])
Out[46]: 
array([[  0, 232, 208, 184, 160, 136, 112,  88,  64,  40,  16, 248],
       [  0,   3,   7,  11,  15,  19,  23,  27,  31,  35,  39,  42],
       [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0],
       [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0]], dtype=uint8)

      


Same idea, but more compact:

In [50]: dt1=np.dtype(('i4', [('bytes','u1',4)]))

In [53]: x2=x.view(dtype=dt1)

In [54]: x2.dtype
Out[54]: dtype([('bytes', 'u1', (4,))])

In [55]: x2['bytes']
Out[55]: 
array([[  0,   0,   0,   0],
       [232,   3,   0,   0],
       [208,   7,   0,   0],
       [184,  11,   0,   0],
       [160,  15,   0,   0],
       [136,  19,   0,   0],
       [112,  23,   0,   0],
       [ 88,  27,   0,   0],
       [ 64,  31,   0,   0],
       [ 40,  35,   0,   0],
       [ 16,  39,   0,   0],
       [248,  42,   0,   0]], dtype=uint8)

In [56]: x2
Out[56]: 
array([    0,  1000,  2000,  3000,  4000,  5000,  6000,  7000,  8000,
        9000, 10000, 11000])

      

+5


source


In Python 3.2 and up, there is a new int

method to_bytes

that can also be used:



>>> convert = lambda n : [int(i) for i in n.to_bytes(4, byteorder='big', signed=True)]
>>>
>>> convert(1)
[0, 0, 0, 1]
>>>
>>> convert(-1)
[255, 255, 255, 255]
>>>
>>> convert(-1306918380)
[178, 26, 2, 20]
>>>

      

+3


source


You can use bitwise operations:

def int32_to_int8(n):
    mask = (1 << 8) - 1
    return [(n >> k) & mask for k in range(0, 32, 8)]

>>> int32_to_int8(32768)
[0, 128, 0, 0]

      

Or, alternatively, you can use struct

package
in Python:

>>> import struct
>>> int32 = struct.pack("I", 32768)
>>> struct.unpack("B" * 4, int32)

(0, 128, 0, 0)

      

One nice thing you can use in a package struct

is that you can efficiently accomplish this int32

before int8

:

import numpy.random

# Generate some random int32 numbers
x = numpy.random.randint(0, (1 << 31) - 1, 1000)

# Then you can convert all of them to int8 with just one command
x_int8 = struct.unpack('B' * (4*len(x)), buffer(x))

# To verify that the results are valid:
x[0]
Out[29]: 1219620060

int32_to_int8(x[0])
Out[30]: [220, 236, 177, 72]

x_int8[:4]
Out[31]: (220, 236, 177, 72)

# And it FAST!

%timeit struct.unpack('B' * (4*len(x)), buffer(x))
10000 loops, best of 3: 32 µs per loop

%timeit [int32_to_int8(i) for i in x]
100 loops, best of 3: 6.01 ms per loop

      

UPDATE: Compare struct.unpack

with ndarray.view

:

import numpy as np

# this is fast because it only creates the view, without involving any creation
# of objects in Python
%timeit x.view(np.int8)
1000000 loops, best of 3: 570 ns per loop

      

If you were to do some actual calculation:

uint8_type = "B" * len(x) * 4
%timeit sum(struct.unpack(uint8_type, buffer(x)))
10000 loops, best of 3: 52.6 µs per loop

# slow because in order to call sum(), implicitly the view object is converted to
# list.
%timeit sum(x.view(np.int8))
1000 loops, best of 3: 768 µs per loop

# use the numpy.sum() function - without creating Python objects
%timeit np.sum(x.view(np.int8))
100000 loops, best of 3: 8.55 µs per loop # <- FAST!

      

Take a home message: use it ndarray.view()

!

+2


source


Just using inline separation and python module you get 6x speedup in my tests.

def convert(i):
    i = i % 4294967296
    n4 = i % 256
    i = i / 256
    n3 = i % 256
    i = i / 256
    n2 = i % 256
    n1 = i / 256
    return (n1,n2,n3,n4)

      

+1


source







All Articles