Replacing a specific Dataframe index value
I am trying to change a specific index value for a dataframe. The data block looks like this:
start stop nested_in
0 2015-11-10 05:42:00+00:00 2015-11-10 07:22:00+00:00 -1.0
0 2015-11-10 05:42:00+00:00 2015-11-10 06:09:00+00:00 0.0
0 2015-11-10 06:21:00+00:00 2015-11-10 06:37:00+00:00 0.0
0 2015-11-10 06:42:00+00:00 2015-11-10 06:58:00+00:00 0.0
0 2015-11-10 17:00:00+00:00 2015-11-10 21:55:00+00:00 -1.0
0 2015-11-10 17:00:00+00:00 2015-11-10 17:45:00+00:00 4.0
0 2015-11-10 17:45:00+00:00 2015-11-10 18:01:00+00:00 4.0
With index 0.
I want to do something like this:
for i in range(0, df.size):
df.index[i] = i
But it gives me the following error
TypeError: Index does not support mutable operations
All I can do is this:
df.index = [i1, i2,... , i(df.size-1)]
So for this example:
df.index = [0,1,2,3,4,5,6]
The output I want is this:
start stop nested_in
0 2015-11-10 05:42:00+00:00 2015-11-10 07:22:00+00:00 -1.0
1 2015-11-10 05:42:00+00:00 2015-11-10 06:09:00+00:00 0.0
2 2015-11-10 06:21:00+00:00 2015-11-10 06:37:00+00:00 0.0
3 2015-11-10 06:42:00+00:00 2015-11-10 06:58:00+00:00 0.0
4 2015-11-10 17:00:00+00:00 2015-11-10 21:55:00+00:00 -1.0
5 2015-11-10 17:00:00+00:00 2015-11-10 17:45:00+00:00 4.0
6 2015-11-10 17:45:00+00:00 2015-11-10 18:01:00+00:00 4.0
I've done some research but couldn't find a simple solution.
+3
source to share